Constraint Fluids on GPU

Martin Nilsson

September 7, 2009

Master’s Thesis in Computing Science, 30 ECTS credits
Supervisor at CS-UmuU: Lars Karlsson
Supervisor at Algoryx: Kenneth Bodin

Examiner: Per Lindstrom

UMEA UNIVERSITY
DEPARTMENT OFCOMPUTING SCIENCE
SE-901 87 UMR
SWEDEN

Abstract

The processing power of graphics hardware has increaseénidously in the last several
years and they are therefore used more and more outsideioitfemded domain of graphics
rendering. This thesis describes the implementation aswlteeof a fluid simulator, using the
constraint fluid method, which harnesses the processingipofimodern GPUs, in particular
NVIDIAs CUDA platform. As demonstrated in this thesis, fiale systems with hundreds of
thousands of particles can be simulated and visualizedeatictive rates and systems containing
up to a million particles can be run at a few frames per secohigde biggest performance

bottleneck is currently in the solver, in particular theda€ a working preconditioned Conjugate
Gradient implementation.

Contents

1 Introduction

2 Problem Description

2.1
2.2
2.3
2.4
2.5

Problem statement L.
Goals e
Purposes
Methods
Relatedwork,

3 General-Purpose Computation on Graphics Processing Urst

3.1
3.2

Introduction
CUDA . .
3.2.1 Hardware architecture
3.2.2 Programmingmodel
3.2.3 Graphics APlintegration
3.24 Vectortypes. e

4 Constraint Fluids

4.1
4.2

4.3

Smoothed particle hydrodynamics
Constraineddynamics.
421 Densityconstraints L.
422 Jacobianmatrix oo
4.2.3 Systemofequations
Stateupdate

5 Collision Detection

51

Methods for collision detection
5.1.1 Boundingvolumes
5.1.2 Space partitioning
5.1.3 Sweepandprune

CONTENTS

6 Methods for Solving Systems of Linear Equations

6.1 TheJacobimethod
6.2 The Gauss-Seidelmethod
6.3 The conjugate gradientsmethod
6.3.1 Searchdirections
6.3.2 Algorithm
6.3.3 Preconditioning
6.4 Convergence

7 Implementation

7.1 Constraintfluid
7.1.1 Applicationintegration
7.1.2 Datastructures
7.1.3 Arithmeticoperations.
7.1.4 ConstraintFluidclass
7.1.5 Helperobjects
7.1.6 Datarepresentation

7.2 Collisiondetection
7.21 Algorithm.
7.2.2 Datarepresentation
723 Kernels

7.3 Solvers
731 Jacobi.
7.3.2 Conjugate Gradient
7.3.3 Preconditioned Conjugate Gradient

7.4 Demonstrator

8 Results

8.1 Performance.,
8.1.1 CPUcomparison

8.2 Memoryusage

8.3 Solvercomparison
8.3.1 Performance
8.3.2 Convergence

8.4 Demonstrator

9 Conclusions

9.1 Limitations
9.2 Futurework

10 Acknowledgements

CONTENTS

11 Terminology

References

69

71

Vi

CONTENTS

List of Figures

3.1
3.2
3.3
3.4
3.5

4.1
4.2
4.3

51
5.2
53
5.4
5.5
5.6

5.7
5.8
5.9
5.10

6.1

6.2
6.3
6.4

6.5

7.1
7.2

Design differences between a general-purpose CPU ala G 6
Different devices result in different scheduling ofgad blocks. 7
Internals of an NVIDIAG8OGPU. 8
Magnification of one multiprocessor block. 8
The different memories that are used ina CUDA system. 9

Atom distribution inside a particle and an example of aathing kernel function. 14

Three overlapping particles. e 14

A small set of particles and the Jacobian matrix theyterea. 16
Boundingvolumes. 20

Creation of a 2D k-dop boundingvolume. 21

Example k-dopsin3D. 21

Bounding volume hierarchy. L .. 22

Varying object sizes makes finding a good cell size hard.. C 22
Example scenario in two dimensions with a set of objer;asunlform cell grld

along with the hash list created by the spatial hashing noetho. 23
Collision detection using home cells and particlesgrti. 24
Cubic space subdivided usinganoctree. 25
Spacesplitbyakd-tree.. 25

Sweep and Pruneinaction 26

Visualization of a system matrix for a system of equatitirat contains sets of

independentequations. 30
Graph of the quadratic form for 22 systemmatrix. 30
Quadratic form for an indefinite matrix. 31
The search line and the gradient at several points alentinte. The minimum

along the line is found when the gradient is orthogonal teséerch line. 32
Convergence is slow when similar directions are useeraétimes. 32
The different parts of the library., 35
Layout of a sparse matrixinmemory. oo 38

vii

viii LIST OF FIGURES
7.3 Example of a matrix-vector multiplication. L. 40
7.4 Example of a transposed matrix-vector multiplication.. 41
7.5 The different lists created during the collision datecalgorithm. 44
7.6 Method used for particle reordering. 44
8.1 Timings for acomplete state update. 54
8.2 Time per particle for acomplete stateupdate 54
8.3 Timings for the collision detection. 54
8.4 Timings for 20 iterations of the Jacobi solver 55
8.5 Average time for a single Jacobi iteration. 55
8.6 Timingsforstateupdates. 56
8.7 Simulation time for the CPU and the GPU implementations. 57
8.8 The speedup achieved for the CPU comparison tests. . 57
8.9 Execution time for one solver iteration of the CPU andGirtJ |mplementat|ons 57
8.10 Speedup forthe solveriterations. 57
8.11 Memory usage for the different buffers. e 58
8.12 Timings for an increasing number of solver iterations.. 58
8.13 Averagetime for each solveriteration. 58
8.14 Time usage for one solver iteration of JacobiandCG. 59
8.15 Solver convergence foranicefluid.. 60
8.16 Solver convergence fora compressed fluid. 60
8.17 Comparison between Jacobi and Gauss-Seidel foraunidefl 60
8.18 Comparison between Jacobi and Gauss-Seidel for a essgat fluid. 60
8.19 Comparison between Jacobi and Gauss-Seidel for a essgat fluid. 61
8.20 Solver convergence for a highly compressedfluid. 61
8.21 Solver convergence for a highly compressedfluid. 61
8.22 Awall of fluid held back byadam. 63
8.23 The dam has been broken and fluid is flowing out into théagoar. 63
8.24 The fluid hits the far end of the container and is beings®d upwards. . 63
8.25 Due to gravity, the fluid comes falling down again. 63
8.26 The fluid is beginningtocalmdown. 63
8.27 Thefinalwave. 36

List of Tables

7.1
7.2

8.1
8.2

List of the data organized by the highest layer in thalipstack 42
The arrays used by the collision detection implemematlong with their type

and numberofelements. o 45
Simulation parameters for the performancetests. 55
Number of particles and container sizes for each pedomatest. 56

LIST OF TABLES

List of Algorithms

6.3.1 The Conjugate Gradientalgorithm 33
6.3.2 The preconditioned Conjugate Gradient algorithm 34
7.2.1 High level description of the collision detectionafghm. 45
7.2.2 Cell hash generationkernel., 45
7.2.3 Particle reorderingkernel. L e 46
7.2.4 Narrow phase kernel 47
7.3.1Jacobisolver 49
7.3.2 The implemented Conjugate Gradient algorithm 50
7.3.3 The implemented preconditioned Conjugate Gradigotighm 51

Xi

Xii LIST OF ALGORITHMS

Chapter 1

Introduction

Certain types of fluid simulations require the solution t@&asystems of linear equations and
the close match between a GPU’s parallel architecture amgbaallel nature of some types
of iterative solvers makes fluid simulations good candisléde significant speedups when the
simulation is written to exploit the processing power of modGPUs. This Master's Thesis
explores the possibility of implementing a novel methodffoid simulations, constraint fluids,
using NVIDIAs CUDA platform, which enables developers tmrnon-graphics related code
on CUDA enabled hardware, such as any modern NVIDIA GPU. Bmsicaint fluid method is
suitable for visual and interactive applications, and giveproved stability compared to stan-
dard fluid simulation techniques, such as SPH [21], alloviandarger time steps and thus faster
simulations [6]. The target platform for the software deyald during this project, CUDA, is
a hardware architecture developed by NVIDIA. It gives depels direct access to the compu-
tational units of CUDA capable devices, allowing for getgnarpose computations on graph-
ics hardware. This is desirable since the raw floating poéntgmance of graphics hardware
greatly exceeds that of a conventional processor.

The project is performed at Algoryx Simulations AB, a comypapecializing in physics
simulators for the professional market. Their physicskibas used for example in vehicle,
off-shore and medical educational simulators.

The reportis divided into four parts. The first describesghigpose and goals of the project
and gives a thorough problem description. The second partdescription of the platform
that is the target for the libraries and applications thattae final result of the project, i.e.
NVIDIAs CUDA. The third part is a collection of chapters,oim Chapter 4 to 6, that gives
the theory behind each of the topics that is required to impl& the fluid simulator. The first
chapter in this collection describes the theory behind tirestraint fluid method and the steps
that must be performed in order to get a working simulatoe dther two chapters dive into the
details behind pieces of the constraint fluid method andrdesseveral methods to solve the
subproblems. The final part of the report details the regilthe project, the implementation
and its performance and finally the project is evaluated.

A number of symbols are used throughout the report. Matnic#éde denoted by capital
Latin letters, such a&, and diagonal matrices by upper case Greek letters, 2.g\ectors
are written as bold lower-case letters, for exampleThe number of something, such as the
number of particles in a simulation, is denotedrbyElements inside a vector is referenced by
subscripting the vector with an index. For examplds theith element of the vector. When
talking about a sequence of something, the sequence numbearked as¥). For example,
A® is thekth A created by an iterative solver.

Chapter 1. Introduction

Chapter 2

Problem Description

This chapter describes the extent of the project and defiresa goals that the project should
reach. The chapter also includes a short survey of relatekl wahe fields of fluid simulations
and linear systems of equations solving.

2.1 Problem statement

The project should produce a fluid simulator, using the caistfluid method, that uses a
CUDA capable device to offload the computationally inteasivmulation from the CPU. Within
this problem lies collision detection between a large nunadfespheres and solving a sparse
linear system of equations.

A demonstrator for the fluid should also be implemented. Tdmeahstrator should visualize
the fluid as it is being simulated inside a container and atsaltde to produce a dam break
scenario, i.e., a quick expansion of the container in orection.

2.2 Goals

The primary goal of the project is to have a working demotstri@r the fluid that can simulate
hundreds of thousands of particles at interactive rategaaa larger systems at non-interactive
rates.

2.3 Purposes

Several applications can benefit from fast, high resolutioidl simulations and include, for

example, engineering [50], visual effects for motion piegi[46], and interactive 3D games and
immersive educational software [20]. All interactive a@pations have strong requirements on
the performance of the simulation since a low frame raterséwedegrades the user experience.

2.4 Methods

The development process involves several stages. A sadidratanding of the CUDA platform
must be acquired in order to write efficient applicationg] atgorithms for performing all the
necessary steps of the simulation must be acquired or deetland finally implemented and

4 Chapter 2. Problem Description

tested. Each part of the simulation must also be verified sonthat the application produces
correct simulations.

Knowledge about CUDA is obtained from documentation, pregieon slides, educational
videos, and code examples provided by NVIDIA and otherslisSki CUDA are developed
by writing small applications that test concepts and teghes learned from the information
sources. The actual simulation is implemented in an incréahdéashion where a CPU-based,
naive, spring-and-damper particle simulation is devetigred then optimized using well estab-
lished methods and algorithms for efficient collision détet The CPU application is written
with the CUDA platform in mind, using only algorithms and gramming techniques that can
be transferred to CUDA. The application is then ported to @Umhich is the first major de-
velopment effort using the target platform.

When a solid foundation for a particle simulation on CUDA @rmplete, the next phase
is to replace the spring-and-damper mechanics with thesiemllation of the Constraint Fluid
method. The switch substantially increases the amount tfenaatics in the application which
makes it harder to debug since there are more layers of dategsing between a detected col-
lision in a set of particles and the resulting effect on th&teyn. A number of Matlab programs
are therefore constructed to validate the result from idd@&l parts of the simulation.

2.5 Related work

There has been much work done in the field of fluid simulatiorgduding efforts to utilize the
processing capabilities of graphics hardware for the sitiwris. Harada et al. have done several
projects [24] where fluids are simulated on a GPU [26, 25]. ¢erral. describe an extension to
the FLIP [8] method where an incompressible fluid is simuatsing particles with adaptable
volume and mass [29]. Crane et al. describe a grid-basedyssed to particle-based, fluid
simulation method that they implemented using DirectX shadil2].

The topic of equation solving using GPUs is explored by Bdlale who developed a
conjugate gradient solver for sparse, unstructured nestnising shaders [7]. A more recent
paper [9] was published by Luc Buatois et al. in which theycdés their GPU implementation
of the Jacobi-preconditioned Conjugate Gradient algoriir sparse linear systems. The paper
discusses both NVIDIA's CUDA API as well as the competing AMDI CTM API. A more
general discussion is made by Wiggers et al. who explorenigdtion techniques and multi-
core solutions in order to speed up a Conjugate Gradienésolv both a dual-core processor
and the NVIDIA G80 GPU [51].

Chapter 3

General-Purpose Computation on
Graphics Processing Units

3.1 Introduction

The fast development of graphics hardware, or GPU for Gegpirocessing Unit, in the last
several years has resulted in an increase of floating pompatation power that exceeds that
of the CPU [14]. The main reason behind the steady progresplisnounced focus on parallel
execution [38]. In graphics rendering, which has been tivagy focus of graphics hardware
since their introduction, tasks such as transforming eestiand calculating lighting are natu-
rally parallel [47]. Because of this, adding more compuwtadil units, or cores, to the graphics
hardware significantly increases the peak performanceontrast to CPUs, graphics hardware
dedicate a large portion of its transistors to computatianés such as ALUs and FPUs [10],
while the CPUs spend more of the transistors on caches aricbtbardware that implement
for example branch prediction and out-of-order executibt].[A graphical representation of
this can be seen in Figure 3.1. This difference makes the GRIUGEPU suited for different
kinds of problems. In a simplified way, one can say that a CRtfbpas best when a few, small
pieces of data are processed in a complex, but sequential, Tias lets the CPU utilize the
many transistors used for caching, branch prediction astduation level parallelism [44]. The
GPU, on the other hand, need massively data parallel prattiemvork efficiently [28].

The programming model most commonly used when programmi@Bd is based on the
stream programming model [31]. In the stream programmindehadnput to and output from
a computation comes in the form of streams. A stream is actle of homogeneous data
elements on which some operation, called a kernel, is to bfenpeed, and the operation on
one element is independent of the other elements in thenstrBacause of this, the graphics
hardware can assign one element from each input streamitadunal cores and have them run
in parallel. When more cores are added, additional elenfemtsthe stream can be processed
concurrently.

Another important difference between a general-purposegasor and a typical GPU is
the memory bandwidth. Because of simpler memory models arrégquirements from legacy
operating systems and memory models, the GPU can suppoettimam 100 GB/s of memory
bandwidth, while the bandwidth of general-purpose pramesss around 20 GB/s [14]. Another
important aspect of memories, latency, is increasinglplréng the weakest link in a GPU. For
each year, the computational power is increased about 78¥hamory bandwidth by 25%, but

6 Chapter 3. General-Purpose Computation on Graphics Procgsing Units

ALU ALU

Control

RAM RAM

CPU GPU

Figure 3.1:Design differences between a general-purpose CPU and a GPU.

memory latencies are improved by only 5% [44]. Because of tummunication with memory
is becoming increasingly more expensive in terms of the rermobarithmetic operations that
can be performed while waiting for the data to arrive.

Because of the properties outlined above, scientists agiegrs have begun to use GPUs
for numerical calculations outside the field of graphicsings<GPUs for these types of appli-
cations is called General-Purpose computation on Graphmsessing Units, or GPGPU, and
began with the introduction of programmable shaders in 285l At first, programmers had to
use graphics-centric APIs such as DirectX or OpenGL [23ré&fore, concepts from the CPU
realm had to be mapped to their GPU counterparts [27]. Fonpla arrays were stored as tex-
tures and inner loops represented as fragment shader pregtater, in 2006, AMD announced
Close To Metal (CTM), a hardware interface designed forestreomputing [2] and NVIDIA
announced CUDA, a general-purpose parallel computingtaathre [43]. Both of these tech-
nologies provide programming models that let the progranwmite programs without having
to think in terms of textures and shaders.

3.2 CUDA

CUDA, Compute Unified Device Architecture, is a generalgmse hardware interface designed
to let programmers use NVIDIA graphics hardware for purgas@er than graphics in a more
familiar way. In general, the hardware need not be a grapkiesed card at all, as there are
cards designed specifically for general-purpose calanaf42]. From here on, instead of using
the term GPU, any CUDA capable hardware will be referred ta dsvice CUDA defines a
programming model and a memory model that is consistentdmivall CUDA devices. The
programming model describes how parallel code is writteanthed and executed on a device
and how threads are grouped into blocks. The memory modeietethe different types of
memories that are available to a CUDA program. The memoryahisddescribed further in
Section 3.2.1 and the programming model in Section 3.2.2.

To the programmer, CUDA is an extension to the C programméamguiage that allows
the programmer to express parallel sections in the progoarexecution on the GPU. Such a
section is called a kernel. The CPU, or host, sets up the CUmdy@anment and optionally
copies input data to device memory and then launches thelkeWwhen the kernel has been
launched, the host is free to continue performing computaton its own, in parallel with the
device. When the host needs the result from the launcheaketiinitiates a memory copy
operation which waits for the running kernel to finish andnthansfers the result from the
device to host memory.

Kernel code is written on the thread level with access tatfiiVariables that identify the

3.2. CUDA 7

executing thread. As described in the introduction aboragplgics hardware, which is the foun-
dation of the CUDA architecture, has gained their high pannce by dramatically increasing
the number of cores in each device. The first generation CUBAcds, the GeForce 8800
series released in 2006, contain 128 cores [40] and the GeR&5, released in 2008 has 240
cores [41]. To achieve high performance, it is thereforeessary to have many threads running
each kernel. On current hardware several thousand threagiberequired and this number is
likely to increase with each new hardware generation. Tdg@ae organized in a hierarchy and
at the highest level of the hierarchy is the currently rugritarnel. The threads launched for
a kernel are divided into blocks of threads, and the coliectif all blocks for a given launch
is called a grid. Threads within a block can synchronize ardraunicate via shared memory,
but blocks can not be synchronized and must be independeatbfother. The size and layout
of the blocks are controlled by the program at kernel launte grid can be a one- or two-
dimensional array of blocks and the blocks themselves @ottteeads organized in up to three
dimensions.

The division of a kernel into thread blocks is what makes CUAgrams scalable. By
forcing the blocks to be independent of each other, the CUD#&ime system can schedule
the blocks in whatever way is most suited for the currentaevFigure 3.2 shows two possi-
ble schedulings of a set of blocks, where the device with ngores finishes the computation
faster. A CUDA application may get increased performanceew hardware with more cores if
computational tasks are divided into enough blocks tozagtithe available hardware resources.

Grid block

Old device New device
few cores many cores

Time

Figure 3.2:Different devices result in different scheduling of thrddaicks. More cores reduce
the time required to compute the whole grid, if the grid camtanough blocks to fill available
hardware resources.

There is another property, other than highly parallel athors, that is important for achiev-
ing high performance on CUDA devices and that is the aritioetensity. Adding more cores
to a chip adds computational power, but neither increasesangbandwidth nor reduces mem-
ory latency. To avoid idling cores, the ratio of arithmetijoeoations to memory operations
should be as high as possible. CUDA partially mitigates étericy problem by using a form of

8 Chapter 3. General-Purpose Computation on Graphics Procgsing Units

simultaneous multi-threading [18], i.e., by assigningesal/threads to each core and switching
between them when a thread becomes idle. This is describadria detail below.

3.2.1 Hardware architecture

The right part of Figure 3.1 shows a simplified version of thteiinal layout of a CUDA device.

In this section, a more detailed picture of the hardware ballgiven and the G80 family of

graphics cards will be used as an example. The G80 was rdléas¢ovember 2006 and

included in this family is for example the GeForce 8800 sedécards. Figure 3.3 shows a
block diagram of the G80 family of graphics cards.

‘ Thread Execution Manager ‘

SM | SM || SM | SM

[E&[E3
[EalEa [EalEa
E] [sv] [sv] [sm] [sv] [sv] [sv] [sv] [sm] [sv] [sm] [sm] [sv] [sv] [sm]
[CCachd [ECachd
Texture Unit__|[TextureUnit |[Texture Unit |[Texture Unit || TextureUnit |[Texture Unit][Texture Unit |[Texture Unit |

SM | SM || SM | SM SM || SM | SM || SM | SM

DRAM

Figure 3.3:Internals of an NVIDIA G80 GPU.

SM | SM

‘Shared Mem‘ ‘Shared Mem‘

[Const Cache] | |[Const Cache]

 Texture Unit |

Figure 3.4:Magnification of one multiprocessor block.

The central part of Figure 3.3 illustrates the computatianés, labeled SP for Scalar Pro-
cessor, but they can also be called thread processors. fdalthrocessors are split into groups
of eight, creating several Streaming Multiprocessors (384ch block of threads is assigned to
a SM and several blocks can be assigned to the same SM, aidarifast thread switching to
hide the memory latency.

Memory hierarchy

There are several types of memories in the CUDA memory hdbyaiT he four types of physical
memories are registers, shared memory, device memory, @stdrremory. Figure 3.4 shows
the device memory and the Streaming Multiprocessor shassdary. Figure 3.5 shows all four

3.2. CUDA 9

memory types. The registers are part of each scalar pracasdohe host memory is the regular
system memory used by the CPU. It is not accessible by the CthB¥ads.

\ Shared Memory \ \ Shared Memory \ \ Shared Memory \ \ Shared Memory \
[Constant Cache] | [Constant Cache Constant Cache Constant Cache
Texture Unit Texture Unit
‘ Global Memory ‘
‘ Constant Memory ‘
\ Texture Memory \

PCle bus

Host memory

Figure 3.5: The different memories that are used in a CUDA system. QGldsdgbe Scalar

Processors are the register files and the per-SM shared merAbthe other end of the hierarchy
is the device RAM and on the other side of the PCle bus the hesbny. Two types of caches
are located between the device memory and the SM’s, theagdrtstche and the texture cache.

The shared memory is very fast and designed with paralt@izan mind. Itis shared among
all scalar processors in a streaming multiprocessor andbeansed as a software-managed
cache for data that is required by several threads in a blBekformance is increased greatly
if threads in a block cooperatively read data from global manto shared memory and then
do all memory accesses on shared memory until a result isipeadand finally written back
to global memory by all threads in one chunk. Correctly impdaited, this method makes use
of coalesced accesses to global memory, which is descrided/bTo increase the bandwidth
of the shared memory, it is divided into banks. A bank is a waré memory unit that service
memory accesses and a memory can service as many simulbaaemsses as it has banks,
which is 16 on the G80. In other words, 16 threads in an SM cad og write shared memory
simultaneously if the reads are organized in such a way #uit thread reads from or writes to
distinct banks. Consecutive 32-bit words are assignednseaxmutive banks. This has the effect
that threads can read data block-wise: the first thread teadsst value, the second thread the
second value and so on and achieve best possible througtputesult of improper accessing
patterns are bank conflicts. When two or more threads retatelift 32-bit words from the same
bank the requests are serialized and throughput decreasedry times as there are requests
to the bank. Several requests for data within the same 32erd does not result in any bank
conflicts. Instead the word is broadcast to all requestinegiths.

The global memory can be used in four different ways. Theififsy dereferencing a pointer

10 Chapter 3. General-Purpose Computation on Graphics Pragssing Units

given to the kernel from the CPU. This will access the deviesmory directly without using
any caches, resulting in latencies of hundreds of cycleg SHtond way is to use a variable
stored in the constant memory. As the name implies, the anhstemory is read-only by
CUDA threads and can therefore be cached to achieve effmierss. On the G80, the constant
memory is limited to 64KB. An alternative to the constant negynand the third way to access
global memory, is texture lookups. In CUDA, textures workahlike constant memory in that
it is read-only and cached. The difference is that textuaeste much larger, are optimized for
2D locality and provides hardware filtering. Any part of tHelzal memory address space can
be bound to a texture unit, allowing a kernel to read the duftpm a previous kernel through
that texture unit. The fourth use of global memory is for #ttéocal arrays. Arrays created for
the CUDA threads are not stored in registers as are othdnladables. Instead they are stored
in global memory which results in long access delays andipgssemory bus congestion.

The introduction to this chapter mentions the increasinglgstween memory speeds and
computational power. This makes it important to use theaeriemory in the most efficient
manner possible. In CUDA, this is known as a coalesced meimamgaction. When accessing
data in global memory the best performance is achieved whehreads currently executing
on an SM access consecutive memory blocks of either 32, 62®mbits that are aligned to
the same size. When this is the case, all memory operatiengrauped together to a single
operation and the highest possible memory efficiency issaeli. The memory operations may
be serialized if they do not meet this criterion, resultingeduced memory bandwidth.

Streaming Multiprocessors

The streaming multiprocessors, SM for short, provide thematational power of a CUDA
device. In the G80, each SM contains eight scalar proces®i€r32-bit registers and 16KB of
shared memory. When a CUDA kernel is launched the threads$lofcthe grid are distributed
over the SMs. The number of blocks that can be assigned to ®fsicls determined by the
resource requirements for each block in the form of sharedong register usage and the total
number of threads. On the G80 the maximum number of threadSheés 768, the maximum
number of blocks per SM is eight and each block is limited teehat most 512 threads. Blocks
may be queued if there are more blocks than the hardware cafiehand these blocks will be
launched when another block has finished. On the multipsaceke thread blocks are split into
warps and each thread is assigned to a Scalar Processor.pAcassists of 32 threads and is
the smallest schedulable unit in a CUDA device. When issam@struction, the SM selects a
warp that is ready to execute and issues the next instruititirat warp. Most instructions take
four clock cycles to complete and the instruction pipelioethese instructions are four stages
long. Therefore, a complete warp can be completed everydimak cycles. Each thread in
the warp has its own register state and instruction addtethe threads within a warp diverge
because of a data dependent conditional branch instryttiefhardware will execute all paths
in serial and disable all threads that are not on the cugremticuting path.

There is no cost associated with switching between warpge st active warps are stored
in the SM until that thread block has terminated. If one waepgfigrms a long operation, such
as a read from global memory, the scheduler can issue theimstxtiction to another warp
immediately and in that way hide the memory latency as lorthe® are enough waiting warps
to switch to.

3.2. CUDA 11

3.2.2 Programming model

The programming model in CUDA is based on the thread and mghierarchies described in
Sections 3.2 and 3.2.1 and is exposed to the programmer asllesstnof language extensions
to the C programming language. The design philosophy behf@dDA application is to find a
serial sequence of segments in the application where egaiese can be executed in a parallel
fashion, and then split each parallel section into segmimatiscan be solved cooperatively,
independent of each other. The first level of segments is islatlled a “kernel”. A kernel is
a function that is rum times byn different threads logically in parallel. The second lewdhe
grouping of thosen threads into thread blocks. The threads within the sameadhipéock has
access to the same shared memory and can synchronize ancbrajlear and thus cooperatively
solve their piece of the problem. Each kernel can use theudfrggm a preceding kernel as input
and in this way several kernels can be chained together ar twgolve more complex problems.

CUDA devices are built around an architecture NVIDIA callagde Instruction, Multiple
Thread (SIMT), a variant of the architectures in Flynn’saaamy [4]. It is Single Instruction
since each SM only issues one instruction at a time, and palffhread since each thread
has its own instruction address and can execute any code Paghdesign is similar to vector
machines that are Single Instruction, Multiple Data (SIMibe difference being that SIMD
machines expose the vector width to the software wherea3 $tide specify the execution and
branching behavior of a single thread. The programmer cigmdre the SIMT architecture,
writing the code for each thread independent of all othexdtls and still get correct behavior,
but substantial performance improvements can be achieygdlking care to minimize path
divergences within thread warps.

A CUDA program typically follows a pattern similar to the folving. A set of input data is
created on the host in some way, possibly generated or readdisk. This data is copied from
host memory to device memory and then a kernel is launcheel CRU is free to continue exe-
cution in parallel with the kernel if there is work availapte simply wait for the kernel to finish.
The CUDA threads uses their thread ID variable to find thesceiof the data and optionally
copies it to shared memory for others to use. The threadspgarm some calculations and
finally writes the result back to device memory. When the fesnel has terminated, the host
can launch a second. There is an implicit synchronizatiankiérnel is launched while another
is still running. The threads of the second kernel each rgaelce of the data written by the first
kernel, does some calculations and then writes the restittioadevice memory. This chain of
kernels can continue for as long as necessary. When thedmdt has been computed the CPU
can copy the result back to main memory and from there eithirtue performing operations
on the data or store it somewhere.

3.2.3 Graphics API integration

CUDA can inter-operate with the two major graphics APIs Gpkerand DirectX. Resources
such as vertex buffers and textures can be mapped into theACAdldress space and both
read from and written to by CUDA kernels. The API supports piag OpenGL vertex- and
pixel buffer objects and from Direct3D can vertex- and intbeXfers, surfaces and textures be
mapped, with some restrictions. For example can the primamgler target and stencil- and
depth buffers not be mapped.

3.2.4 \ector types

In addition to the primitive data types in C, CUDA suppliestge types of these containing up
to four components. They are named by the primitive type adcor element followed by the

12 Chapter 3. General-Purpose Computation on Graphics Pragssing Units

number of components, for exampleat4 andint2 . These data types can also be used in
standard C++ host code througfhuct ~ definitions and overloaded operators defined in CUDA
header files.

Chapter 4

Constraint Fluids

Constraint fluids [6] is a method for simulating fluid flowsidta particle method, which means
that the simulated fluid is represented as a set of partielels earrying a small quantity of the

fluid. Each particle has a fixed size and carries a fixed magsadh simulation step the method
tries to move these particles according to the externakfoiic a way that keeps the density of
the fluid as close as possible to a given target density.

4.1 Smoothed particle hydrodynamics

A number of properties, such as density, must be known in padait of the fluid when per-
forming a simulation step. The constraint fluid uses a metalidéd SPH, Smoothed Particle
Hydrodynamics [21], when calculating these propertiese iethod was originally developed
for astrophysical problems, but its ability to trace matkiriterfaces, free surfaces and moving
boundaries made it useful also in other areas such as niategiagth, metal forming, and fluid
simulations [37].

SPH distributes the fluid within a particle according to a sthing function, oikernel The
kernel is a functioW : R? — R that has its highest value when the first given argument is zer
and monotonically decreases as the first argument increeiédinally reaching zero when
the first argument is equal to or larger than the second argymwich is the radiué of the
particles. Figure 4.1 shows the distribution of fluid atonsde a particle and an example kernel
function.

To compute the density at any pointp in the fluid, the mass of each particle is multiplied
with the kernel function given the distanag,from the selected point to the particle center as
argument. The results are summed and the sum is the fluidtgansie selected point:

p(p) = ¥ mwW(d.h) (4.1)

A number of kernel functions have been proposed. One thabéas used successfully in
fluid simulations is the following kernel, poly6, designedMuller et al. [39]:

315 h2_ 2\3 fo<d<h
Wpo.w<d,h>{W< “r o =ds=h

} (4.2)
0 otherwise.

13

14 Chapter 4. Constraint Fluids

NN

h

Figure 4.1:Left: distribution of fluid atoms inside a particle. Righterkel function that de-
scribes the distribution of atoms.

Figure 4.2:Three overlapping particles. The density at any point indherlap is calculated as
the sum of each particle’s contribution.

4.2 Constrained dynamics

A constraint is a representation of what states are allowadin a simulation [52]. Examples
of constraints in more general physics simulatorsdiséance constraintsvhich say that two
objects should remain at a fixed distance from each other,nanepenetration constraints
which say that an object may not penetrate for example a ptaroh as a floor or a wall. Each
constraint is represented by an indicator function thaei® zvhen the system is in a legal state
and further from zero the more the constraint is violatece gradient of the indicator function
describes in which direction a force must be applied to tioéating object in order to restore
the constraint, i.e. move the object into an allowed stale Fart of the domain of the indicator
function that the function maps to zero is called toastraint surfacend the gradient is always
normal to this surface.

In the beginning of each simulation step the state of theeayss inspected and for each
constraint one element in the constraint violation vegtar calculated, as well as the gradient
vector of the indicator function. The gradient is insertetbithe Jacobian matri, which is
called a Jacobian matrix since it relates changes in thé&fga'tcoordinates to changes in the

4.2. Constrained dynamics 15

constraint indicator function. From the matiix the constraint violationg, and the current
state of the system a linear system of equations is formailatel solved, yielding a set of
Lagrange multipliers, denoted The Jacobian matri&s, which holds directions, anll, which
represents magnitudes, are then used to calculate thesfiraethe constraints induce on the
system. The simulation step is completed by applying theraat forces and the constraint
forces to all objects in the simulation to find their new véiies and positions.

4.2.1 Density constraints

The goal of the constraint fluid method is to keep the dendith®fluid as close as possible to
a target densitpg and an indicator function that achieves this is

gi =pi—Po (4.3)

wherep; is the density calculated for partidlesing SPH as described above ggds the target
density of the simulated fluid. An alternative, but equivaéormulation is
Pi
== -1 4.4
] 0o (4.4)
which gives a smaller number for fluids with large target dtgnd his is the formulation used
throughout the rest of this text.

4.2.2 Jacobian matrix

In addition to the constraint violation, each constrairg havector that points in the direction in
which a force must be applied to restore the constraint. igtesparticle constraints, such as
the non-penetration constraint, the direction is usualtypte to find. For the non-penetration
constraint it is simply the normal of the plane. For the dignsbnstraint, which is a multi-body
constraint, things are a bit more complicated. Each particinfluenced by all its neighbors
and each such interaction must be recorded. The result igraxpaenotedG, in which each
row contains a set of direction vectors for one constraimt @ach block of columns is the
contribution to the constraints from a particular particldnat is, for each density constraint
row i of the matrixG has a non-zero vector in column blogkf the center point of particlé
lies within the influence radius of particle All interactions are symmetrical in the sense that
all particles have the same radius and thus if partiadluences particlg, thenj influences

by the same amount, but in the opposite direction. The réstliit the Jacobian matrix will, if
disregarding the diagonal blocks, become skew-symmaetrib® block level.

Figure 4.3 demonstrates the relationship between papaséions and the resulting Jaco-
bian matrix. The matrix created from five particles is shoagether with the particles’ posi-
tions relative to each other. The final matrix is shown blegge with color gradients to indicate
influences between particles.

For n particles in a three-dimensional space the magiis ann x n block matrix where
each block is a row vector of length three. Each individuathlis calculated as

P

ST i,
Gjj = (4.5)
mARFl

Wk if = |

16 Chapter 4. Constraint Fluids

3
1 2 3 4 5
1] Eam | aam
) L
] == |
Ay mn .
Q Hem s |
2
5

Figure 4.3: Five particles and the Jacobian matrix that is created frdmit positions. The
matrix is shown on the block level, where each block is cdl@aecording to the particles that
influenced the value of that block. White blocks indicatepwahdent particles and contain the
zero vector.

wherem is the mass carried by each particle, dqdis the normalized vector pointing from
particlei to particlej. Also note that the diagonal blocks are the negated sum nbaldiagonal
blocks on that row.

In the context of constrained dynamics, the restoring fémceonstraint violation is in the
direction of the gradient of the indicator function. A vamisg gradient for approaching particles
is undesirable since it corresponds to a zero restoringfdncthe literature it is rather common
to use different kernel functions for different purposesrewithin the same simulation. For
example, Muller et al. [39] applies three different kerfighctions, some of which does not
satisfy all formal requirements on valid kernel functioB8]. The reason is that the custom
kernels results in improved stability. One such kernelledathespiky kernel brings stability
by not having a vanishing derivative when the distance betweo particles goes to zero. A
vanishing derivative at small distances is hard to undedstia a physics perspective, since it
means that the restoration force becomes small at shoandiss. In turn, this results in a
collapsing fluid once these short distances are reached nidtivates the changes to the kernel
gradient.

Following Muller's example, a custom function for repregeg the kernel gradient is used
here, chosen because of its better stability compared ttotheal definition of the kernel gra-

dient.
945

- 32mh8
Inthe general case, the matfdis ac x dnmatrix wherecis the number of constraints active
in the simulationd is the number of dimensions in the space where the partielBde andch
is the number of particles. In a simple constraint fluid siatioh there is one density constraint
for each particle and thusrows inG. If the fluid is to be put in some sort of container with a
non-penetration constraint for each particle, toarould be as high asn?2 However, this does
not change the content and layout of theows that control compressibility. In the fin&
matrix, each constraint occupies one row and has a non-ieck for each particle it affects,
and each particle occupies one block column and has nonbieeks for each constraint it is
affected by.

A (P—d?)? (4.6)

4.2.3 System of equations

To find the Lagrange multipliers, a system of equations must be solved. The system is cre-
ated from the constraint violatioms the Jacobian matri$, and the current state of the system,
including particle velocities and external forcek In addition to this the equation includes

4.3. State update 17

some simulation configuration parameters. The first pammitis a regularization term that
improves the condition number of the system matrix and addstaral elasticity to the con-
straints. In the simulation this causes the fluid to be dygtampressible, which has relevance
to the physics being simulated since even water is actualyty compressible [1]. The second
parameterY, controls how fast a violated constraint should be restored

The equation to solve is the Schur complement form of the SR{3@)] integration method:

1 _ 4 1
— SIA=(Y—-I — —Yg— —GAtf 4.7
(mGG +) ()GV A9 mG t 4.7)

The matrix on the left hand side of Eq. (4.7) is called the $cdmmplement matrix&.. The
value ofZ andY'is controlled by two sets of scalar parameteande with the definitions

1 1 1
Y=diag(;) (4.8)
1+4%7 1442 1+482
4 €1 € Em)
Z—diag< , yes = (4.9)
At2 1+45 1+42 1+4%m

That is, bothY"andX are diagonal matrices with one element for each constnaitité system
and for each constraint there is ande that define th& andX matrices. The two sets of scalar
values are the parameters that can be tweaked in order tmtth behavior of the simulation.
The parameter is the decay rate of constraint violations and can be setéwarfultiples of the
time step. The other parameterjs the compliance of the constraints, which for the conmstra
fluids is the compressibility of the fluid.

Since the resulting and Y matrices are diagonal, if the sameand € is chosen for all
constraints this can be seen as a single scalar that is eitlierd or multiplied with either a
matrix diagonal or a vector.

4.3 State update

Solving Eq. (4.7) yields the vectar, which is used to update the state of the simulated system.
The update method used is leap frog, which is done in two st@pe first step applies all
forces, external and from the constraints, on the simulpteticles and the second step uses
the new velocities to update the position of each particlee fositions, velocitiesv, and
external force$ are vectors of lengtin. Each block ofi consecutive elements in these vectors
describes the state of one particle.

The update formula for particle velocities is

1
m
Here, in the last term, the Lagrange multipliarare used to calculate the velocity change each
particle is subjected to by the constraints. The transpttbedacobian matrixGT, is multiplied
with A, which in essence means that each column, a record of whigdtrednts affect one of the
particles and in which direction, is per-element multigligith the constraint force magnitudes
which is stored in the Lagrange multipliers vector. The sdnmese multiplications is the result
from one segment of th&™ A multiplication and is the constraint force to apply to onetlu
particles in the system, scaled to compensate for the lariglie time step. The force is divided
by particle mass to get acceleration.

The second term is the other forces that act on the partistesy Gravity is an example of
one such force. The force is divided by particle mass to gslacation and then multiplied with

vk — vt By 2am (4.10)

18 Chapter 4. Constraint Fluids

the length of the time step to get this time step’s share aftbeeleration. The two accelerations
are added to the velocity that the particle had at the beggnof the time step, giving the new
velocity of the particle.

When the new velocity has been found, the new position camlselated using the follow-
ing recurrence:

pttl) = p® ¢ Apy(kD (4.11)

The velocity of the particle is simply multiplied with thenlgth of the time step to get the
movement during the current time step and the result is atidén old position.

Chapter 5

Collision Detection

In physics simulations it is important to find all collisioamong the simulated group of objects
in order to be able to simulate phenomenons such as boutaelss sand other types of contact-
related situations. A collision can occur in two differeatrhis; intersection and contact. An
intersection is a state where a volume in space is occupigddylifferent objects. In other
words, two objects overlap, which is usually not desired riga body simulation. The other
variant, a contact, is the case where a single point or anisu@ecupied by two objects. The
real world counterpart to this is two objects touching eattten for example a box resting on a
table.

Collision detection is not limited to finding all objects tlwllide, but may also find the lo-
cation on each object where the collision occurred, theldefthe intersection and the collision
normal.

In general, each object can collide with any other objecthim simulation which makes
collision detection a®(n?) problem. Also, since objects tend to move around a lot in kimu
tions the collision detection must be performed each sitiuniastep in order to find the current
set of colliding objects. Because of these two propertieBison detection can become the
bottle-neck in a simulation when the number of simulateotsjincrease. A number of tech-
nigues have been developed to speed up the collision datemimpared to the naive approach
of testing all pairs of objects.

5.1 Methods for collision detection

Several general methods for collision detection are rexteWw he methods are divided into three
different types: bounding volumes, space partitioningl sweep and prune. In the bounding
volume methods, each object is enclosed in one or more bogndilumes to simplify the
collision tests. The space partitioning methods divideghace where the objects reside into
sections and the number of object pairs that need to be testeduced by only testing the
object pairs where both objects overlap the same sectioaefand prune is a single algorithm
described last in this section.

5.1.1 Bounding volumes

Performing intersection tests between two complex gedesis an expensive operation. To
increase the performance of simulations with many objedts eomplex shapes a pre-test can
be performed before the more detailed intersection testdare. By enclosing each object with

19

20 Chapter 5. Collision Detection

a simple bounding volume some pairs of non-colliding olgjeein quickly be rejected by testing
for intersection between the bounding volumes. If the baugpdolumes do not collide, neither
can the geometries. A collision between two bounding vokimeans that the geometries may
collide and the exact collision test is performed.

A number of different shapes for the bounding volume can kdushe choice is a trade-off
between how well the shape fits the geometry, how expensivimtarsection test is, computa-
tional cost to find the bounding volume, and the storage rement. Two very simple shapes
are the sphere and the axis aligned bounding box (AABB). Bbthese are easy to create and
intersection tests are computationally cheap. A variathéAABB is the oriented bounding
box (OBB). This is a box that is rotated to achieve the bessiptesfit. These volumes are
demonstrated in 2D in Figure 5.1. Even better, with regafidness, is the discrete orientation
polytopes or k-dop [33]. A k-dop is a bounding volume enctbisg k planes, each with a given
orientation. The AABB is a special case of a k-dop with k=6 #relnormal of each enclosing
plane parallel to the axes of the coordinate system. Thepkedeation process can be seen as
placing k planes infinitely far away and moving them towatds ¢bject until all planes touch
it. A 2D example of this is given in Figure 5.2. Common k-dopsithree-dimensional space
are the 14-dop, which is an AABB with cut corners, 18-dop, & With cut edges, and 26-dop
where both the edges and corners are cut.

a b C

Figure 5.1.Three bounding volumes demonstrated in two dimensiongregrs. b) axis aligned
bounding box. c) oriented bounding box.

To improve the fitness, a hierarchy of bounding volumes cacréated [30]. A bounding
volume hierarchy is a tree structure where the root nodeagmmthe bounding volume for the
entire object, and each subsequent level contains finer aaddpproximations of the object.
Each internal node has a number of children that represefiitrtér bounding volumes, and the
union of these volumes entirely covers the part of the olijestt was covered by their parent.
This ensures that any poipton the object is enclosed by all ancestors of the leaf node tha
containsp. This allows the collision detection algorithm to performwacse tests on the large
bounding volumes at the higher levels of the tree and prunlerahches below a bounding
volume that failed the intersection test. While the uniothef children is required to cover all
parts of the object that the parent covered, they are fredémé outside of the parent. However,
this coverage is redundant since it will be covered by themi sibling and thus its children.
Any collision test where the collision happens in this arelh fail the collision test with the
parent and instead descend into the sibling. On the othat, ifaredundant coverage leads to
a tighter fit of the area covered by the parent, it may still lmetwhile. The leaf nodes of the
tree contains the primitives that build up the object anduaesl for exact collision tests when a
collision has been found with a node in the last layer of imadénodes.

Figure 5.4 shows how a bounding volume tree of spheres cargamiaed. For each level,
the bounding volumes for that level is drawn as a solid ling #e bounding volume for the
parent, if any, is shown in dotted lines. Since all volumesspheres, this is an example of a

5.1. Methods for collision detection 21

A

Figure 5.2:Demonstration of a 2D 5-dop. a) Five lines are moved towangsabject. b) Each
line stops when it touches the object. ¢) The complete 5-dop.

oo

Figure 5.3:Example k-dops in 3D. a) 14-dop. Box with cut corners. b) &p-dBox with cut
edges. d) 26-dop. Box where both corners and edges are cut.

sphere-treeOther volumes are of course possible.

When a collision test between two bounding volume trees etperformed the root node
of each tree is tested against each other and if a collisifouisd the smaller volume is tested
against the other node’s children. This continues until lad nodes are found and collision
tests between the real geometries are performed, or whdhsiorotest between two bounding
volumes report no intersection. The rest of that branchéa firuned and one of the siblings is
tested next.

5.1.2 Space partitioning

Instead of testing each object against every other objdtt, av without the use of bounding

volumes, one can use space partitioning. By splitting thedspace into sections and mapping
each object to the sections it overlaps, the collision dete@lgorithm only needs to perform

collision tests between objects that share at least onmseaftthe world space. Another way

to look at it is to say that collision detection need only bef@ened for objects in sections

to which more than one object has been mapped, and then ombedre objects that has been
mapped to that section.

22 Chapter 5. Collision Detection

Figure 5.4:Bounding volume hierarchy of spheres. a) Bounding voluoredtin the root node.
b) First level of children. Parent volume indicated by ddttmes. c) Final level of internal
nodes. Itis clear that the union of the closed circles is adretpproximation of the object than
the full bounding volume depicted in a).

Uniform grid

A very important property of a partitioning scheme is thepghand size of the sections that the
world is split into. A simple way is to use AABBs in a uniformltgrid [22]. The following
expression finds the indeg, of the cell where poinp = [x,y, 7 resides:

oo [P e [P0 e 57 =

where[xo, Yo, 20| is the coordinate of the base vertex of the first AABB #8dS,, S| is the size
of each AABB.

The size of a cellis very important and should be based orizke sf the simulated objects.
The uniform grid works best when the objects are roughly #messize and evenly distributed
over the world space. It can be hard to find a good cell sizeeifetlare both very large and very
small objects. With small cells the large objects will beratbseveral times and thus increase
the memory usage, but larger cells will cause some cellsltbdarge number of small particles
which will result in an increase in the number of collisiostiethat must be performed.

PSR It .
s sLe e
S ha s
At R
Hi'f;ﬁnum

Figure 5.5:Varying object sizes makes finding a good cell size hard.

5.1. Methods for collision detection 23

The storage of each cell is another important aspect. A {tlirmensional array of cells is
a simple approach, but may cost too much in terms of memorguwuption if there are many
empty cells. A technique to reduce the amount of required angns to use spatial hashing.
Instead of using the calculated cell index as an index intogel array, a hash key is calculated
and used to store the objectin a hash map. The hash map isfdistkets where each bucket is
associated with a hash key. The hash key for each cell thabjaat@verlaps is calculated and
the object is recorded in each associated bucket. Cellxtimiain no objects use no memory
since the objects are stored directly. The next step, diethash map has been filled, is to
traversed the hash map and all objects that have been recordee same bucket are tested
against each other. An example is shown in Figure 5.6.

The hash key for a cell can, for example, be calculated usiaddilowing expression:

K= (Cx- px+Cy- Py+Cz- pz) modn (5.2)

wherepy, py, andp; are large prime numbers. Other hash functions are alsolpessi

The size of the hash map, is of vital importance for the performance of the collision
detection algorithm. If too small, then many cells will bergd in the same bucket, but a too
large size reduces performance because of increased mesagy.

Figure 5.6 shows a situation where five objects are locatedtimo dimensional cell grid
where each cell has been given a hash key between zero andTireresulting hash list is
shown on the right of the image.

0 ol
70114|2|5]4|7]4 1B
BFrols 1 6 |29l 2lc
3 7/10o08 8 3a
2 13|s5/1]6|6 /86 4 D,E
®g/1/3[3]6|0|3]4 5 /A
¥s17/3]1 3 6047 6E
71435 |laE8l 3 7]A.B
62/0|3[8]9]3]5 '8/B,D
9/C
a b

Figure 5.6:Example scenario in two dimensions and the hash list crdagete spatial hashing

method. a) Grid layout with objects. The number written icteaell is the hash key for that
cell and the cell indices for the first column of cells are shaw smaller font and increases
successively to the right (not shown). b) Resulting hashviere the storage location of each
object is shown. Collision checks are required for cellegihash keys 4, 7 and 8.

An alternative to explicitly storing the cells is possiblaen the difference in the sizes of the
objects are small. Each object is giveh@me cellbased on the center point of the object and
by making the cells larger than the largest object, two dbjean not collide unless they have
the same or neighboring home cells. Collision detectioroisecby calculating the home cell of
each object and then sorting the list of objects based ondheeltell. After sorting, all objects
that have the same home cell are stored consecutively in myeand the start and end of each
non-empty cell can be found. The only thing that remains igetate over the non-empty cells
and test all particles in each cell against the other padisi that cell and the particles in the

24 Chapter 5. Collision Detection

neighboring cells.

Figure 5.7 shows an example where this method is used. Whegkicly for collisions,
the algorithm picks an entry from the list of home cells araig¢he found objects against the
other objects with the same or neighboring home cell. Fomgte, when inspecting home cell
with index 2, the neighboring cells have index 1, 3, 5, 6 andD7.these, only the cell with
index 3 has an entry in the home cell list, and thus only thihineeds to be tested against the
current cell. The union of objects contained in these twésa@e objectd andc, which are
tested against each other. To avoid duplicate collisioash @dome cell need only test its objects
against neighboring cells with higher cell index. Any csithn with an object with a home cell
with lower index will already have been found when that lowetexed cell was processed. In
the example in Figure 5.7, the home cell with index 9 does petrto perform any collisions
checks since all non-empty neighboring home cells have argell index.

(o]
0 1 IJ_IZ 3 . .
a@™d b List of objects
[abcdefgl

4 5 6 7
10 11
f _ci [(0.), (2)),(3)),(8)), (9))]

r 1y

List of home cells

12 |13 | 14 | 15

a b

Figure 5.7:Collision detection using home cells and particle sortiag.Grid layout with ob-
jects. Numbers show cell index and lower-case letters amaseon objects. b) Data structures
used for collision detection.

Recursive space partitioning

A considerable speedup can result if a recursive spacdipaitig scheme is used when the
simulation contains objects of various sizes. The idea i¥¢ate the space partitioning based
on the shapes and positions of the simulated objects. Thergegaeral ways to choose how to
perform the splitting and three such ways will be describedeh One technique for splitting
the space is an octree [49]. An octree is made up of severdble¥ cubes organized in a tree
hierarchy. At the first level, a single node represent thelevbimulated space. This node, just
as all other non-leaf nodes, has eight children. The childepresent the eight subspaces that
are created by splitting the space represented by the paoeetinto eight pieces. The split
is always made in three slices, each parallel to one of thedawete axes, meeting at a single
point. This ensures that each piece is a rectangular herameg. a cuboid. For each piece, the
process may then be repeated recursively until some staptmonis satisfied, for example that
each segment contains a single object. Figure 5.8 showsaanpde where a two-level octree
has been created with the highest division level in one ofdpecorners.

A similar technique is the kd-tree presented by Bentley [bhe kd-tree also splits the
simulated space into cuboids but splits each node once ngdké kd-tree a binary tree. The
creation process is similar to the one for octrees, butausté# splitting along every dimension
in each step, only one dimension is selected. The choic®iisay, where Bentley suggest that
the split dimension is chosen in cyclic fashion, startinthwiimension 0, then 1 and so on up to
dimension k-1, after which dimension 0 is used again. Anrghggestion is made by Dikaiakos
and Stadel [16], who chose to split each cuboid along itséshdimension.

5.1. Methods for collision detection 25

d

Figure 5.8:Cubic space subdivided using an octree. a) Original spagerirst division cuts
the space in eight pieces. c) The granularity of one of thectopers is increased by dividing
that section once more. d) The tree structure created frasnstt of divisions.

5.1.3 Sweep and prune

This method [11] is also called sort and sweep [22] and buifts the observation that for two
objects to collide, their extent in all dimensions of the siated space must overlap. If one can
find one dimension where the extents of the objects do notagvaro collision is possible. The
algorithm can be explained as follows. Select one dimensfdhe simulated space, find the
beginning and end point along that dimension for each oljedtinsert begin and end markers
into a list, eventually containing2entries whera is the number of simulated objects. The list
is sorted in ascending order based on the coordinate stothd marker and collision detection
is performed while traversing the list. Each time a beginkaars found, insert the associated
object into a list of active objects and remove the objectmiteeend marker is found. Collision

O O

a b

Figure 5.9:Example of a kd-tree. a) The cubic space is first split alomgréidl plane, creating
one large and one thin subsection. The larger subsectidreis $plit by the green plane and the
smaller by the blue. b) The tree structure created by thistem. Each node represents a piece
of the simulated space and edges are colored by the edgeptitahe parent node.

26 Chapter 5. Collision Detection

tests are performed when a new object is inserted into tlieedist, and then only against the
other objects in that list. The choice of which dimensionge is arbitrary, but knowledge about
the simulated system can give clues. The best dimensior isrt@ with the smallest amount of
overlap of objects projected on that dimension.

%

a bacb c d

start start start start
end end end end
Current Active objects
position [b]

Figure 5.10:Sweep and prune in action. The first phase of the algorithmbleas completed
and thus the sorted list of begin- and end markers is avadlabhe figure shows the algorithmin
process of traversing the list. Any collision between dfsja@andb have already been rejected
and now the start marker for objecis encountered when the list of active objects only contains
b. The next thing that will happen is thatvill be inserted into the active list and tested against
b, and a collision will be found.

Chapter 6

Methods for Solving Systems of
Linear Equations

Many types of numerical methods involve solving a lineateysof equations and several meth-
ods exist for solving them. A system of linear equations istao§linear equations that share a
set of unknowns and a solution that simultaneously satisflebe equations. For example, if
X = [x1,%]" is a vector of unknowns, then

51 +4xo =4
3X1+7X =18

is an example of a system of linear equations. In matrix fdh@system is written as

Ax=b (6.1)

whereA is called thesystem matrix

The methods used to findcan be divided into two major groups: direct solvers ancitee
solvers. Direct solvers perform a finite number of operation the system and at the end, in
the absence of round-off errors, produces the desiredtreghile iterative solvers start with
an initial guesx(? and iteratively creates a sequerfog?, x(? ... x(M} of (hopefully) ever
better approximations [15]. Many iterative methods canXpeessed as an iterator function that
is applied to the most recert?.

x(k D — £ (xK) (6.2)

The formulation off is what distinguishes one iterative method from anotherative solvers
come in two types, stationary and non-stationary. A statipmethod is one where the iterator
function can be written as®*Y = ¢+ Tx® wherec and T remain unchanged throughout
the iterations. When there is no su€handc, the method is a non-stationary one [19]. Any
stationary iterative method only converges if the largegmvalue of the iteration matrik, the
spectral radiusis less than one [15].

One drawback of direct methods is their high memory foot@ird potentially long execu-
tion time, which grows cubically with problem size unlessréhis much sparsity [32]. If the
demand for accuracy in the solution is low, then an iteratithod may find a “good enough”
solution after a limited number of iterations faster tham tiime a direct method would require
to find a more accurate solution [19]. Another characteristidirect solvers is the fill-in effect.

27

28 Chapter 6. Methods for Solving Systems of Linear Equatios

The operations that the algorithm performs may write a neno-zalue to a location previously
occupied by a zero [3]. For matrices stored in a sparse fothiatnay be a costly operation and
increases the amount of required memory. In addition, tirethods, unlike iterative methods,
do not map well to the streaming architecture of GPUs.

Iterative methods also have disadvantages. In particataryergence may be very slow
for some problems and the sequero#”},n = 1,..., may even diverge for some very ill-
conditioned problems [3], making it impossible to find thesided result. Two very important
properties to consider when choosing an iterative solviieisate of convergence and for which
problems the solver is guaranteed to converge. The adwaofaterative solvers is that they
consist mostly of matrix-vector operations and do not cleghg system matrif. This lets the
implementation take full advantage of the sparsity of thérixa

Because high precision is most often not required in physiosilations [19], high perfor-
mance is the primary focus of this project, and because theaasused in this project are very
sparse and difficult to modify on the highly parallel CUDA fbtaim, only iterative methods will
be described here.

6.1 The Jacobi method

The Jacobi method is a simple iterative method where eachtiequis considered indepen-
dently [3]. In each iteration, equatidnis used to update the approximation»@fusing the
current approximation for all other unknowns. The updatoise by solving fox; using stan-
dard algebraic manipulations.

v 1 (bi - ; a;,-x%”) (6.3)
G Z

The operation gathers all terms except for the one congigian the right hand side and then
divides both sides by the coefficient of the left hand sides $&ame operation can be expressed
using matrix notation and a matrix splitting. The systemnra is split into two parts
A=®d+R (6.4)
where® contains the diagonal elementsAfindR contains the rest of the elements, i.e., off-
diagonal elements. All other elements are zero. Eq. (6Anhoav be written as
(P+Rx=b (6.5)

which we rewrite to get an expression closer to the form of(B®).

®x+Rx=b (6.6)
®x =b — Rx (6.7)
x=®"1(b—Rx) (6.8)

Since® is a diagonal matrix, it is easy to invert and is reduced toghseen in Eq. (6.3).
Similarly, since the matribR contains the elements @&f except for the diagonal elemerds,
b — Rx is equivalent to the parenthesized expression in Eq. (6.3).

When iterating, Eqg. (6.8) is evaluated again and again, andédch iteration, the approxi-
mation of the solutiomx calculated in the previous iteration is used in the rightthside. Using
the notation for iteration indexing, the update equationristen as

6.2. The Gauss-Seidel method 29

xk D) — o~ (b — Rx() (6.9)
This equation is in the form of Eq. (6.2).

6.2 The Gauss-Seidel method

By making only a slight variation to the Jacobi algorithm @a@ derive the Gauss-Seidel itera-
tive method. The fundamental difference between GausseSand Jacobi is that Gauss-Seidel
does not perform the updates to the unknown vextaidependently for each element. When
the first element irx has been updated, all subsequent updates use the new vahedr ical-
culations. This has the effect that the ordering of updatésch was irrelevant when using
Jacobi, now becomes important [15]. If an arbitrarily seddoequation is updated first, then
it will use only old elements frorw in the update, while if the same equation is updated last, it
will necessarily only use the newer values<ofThis will produce two different, but both valid,
updates tog. Any equation updated anywhere else in the ordering may usi af old and
new elements.

The update rule from the Jacobi method is changed to takentay@ of the new values of
the vectorx:

i—1 n-1

k) 1 ' (k+1))

X U =—bi—) ajx - ajXi (6.10)
i (jZO . j:|Z+1 .

The equivalent matrix representation of Eq. (6.10) requilat we split the system matrix

slightly differently than done for the Jacobi meth@dis now rewritten as

A=®+L+U (6.11)

where, againg contains the diagonal part 8f The other elements, however, are split in an
upper triangular patty and a lower triangular patt. When the equations are processed top-
to-bottom and currently working on equatigrrow i of U contains all the non-zero elements
that should be multiplied with the old elementsxodndL contains the non-zero elements that
should be multiplied with the newly updated elementg.of

The Gauss-Seidel method is derived in matrix notation dsvist

(d+L+U)x=Db (6.12)
Ox+Lx+Ux=b (6.13)
dx=b—Lx—Ux (6.14)
x=®"1(b—-Lx—Ux) (6.15)

The differentiation between different steps in the sudeesgpproximation refinement is done
as follows.

x*KD = o~ L(h — Lx*k+D —ux®) (6.16)

Gauss-Seidel is sequential in nature since each update étearentx; requires that the
previous elements that equatiodepends on have been updated already [19]. This makes it
hard to parallelize since sets of equations that are inflgrinalependent with respect to a set of
unknowns must be found and the amount of concurrency availafimited to the number of

30 Chapter 6. Methods for Solving Systems of Linear Equatios

equations per set. The independent sets are easily visdaiis in Figure 6.1, by reordering the
equations and unknowns in such a way that the equationsndtlset are numbered consecu-
tively, and similar for the unknowns. The result is that tleevrsystem matrix will have a clear
block structure, where the square diagonal blocks are delgoatrices. All unknowns of one
such diagonal block can be updated in parallel, since theglaindependent of each other. The
blocks, however, must be processed serially [45].

"SR

Figure 6.1:System matrix for two sets of independent equations, abloned and green. They
are independent because each unknown within each diagdoek lbnly appear in a single
equation within that block.

6.3 The conjugate gradients method

The conjugate gradient method [48, 19], or CG for short,fiedént from the Jacobi and Gauss-
Seidel methods in that it is not based on a recurrent mu&fbn between an iteration matrix
created from the system matrix and the current approximatiostead, CG should be viewed
as a minimization method that tries to find the minimum on admgurface defined by the
following scalar function, called quadratic form

1
f(Xa) = Ex;Axa— b™xa+c (6.17)

wherec is any scalar constant anxg is any approximation ok. Figure 6.2 shows a graph of
Eq. (6.17) for a % 2 matrix.

® T %

1

Figure 6.2:Graph of the quadratic form for 8 x 2 system matrix.

For any positive-definite matri&, the shape of the quadratic form is a paraboloid bowl and
thus has a well defined global minimum. The gradient of EdL{pis

' (xa) = %ATxﬁ %Axa— b (6.18)

6.3. The conjugate gradients method 31

which, for symmetric matrices, reduces to

f/(Xa) = AXa — b (6.19)

The gradient is a vector field where each vector points in theetion of greatest increase.
By settingf’(xs) to 0, we arrive at the original system that we are trying to sollieis means
that the bottom of the parabolic bowl will, for any symmefpisitive-definite matrix, coincide
with solution of Ax = b. For non-symmetric matrices, the simplification from Eq.18) to
Eqg. (6.19) is invalid and thus the local minimum may lie eleeve than on the solution to
the original system. CG will then instead find the solutionhe system%(AT +A)x=Dh. For
matrices that are not positive-definite, the shape of thehgprface is not a bowl and it will be
impossible to find a global minimum, causing CG to fail. Figér3 shows what the quadratic
form looks like for an indefinite matrix.

Figure 6.3:Quadratic form for an indefinite matrix.

6.3.1 Search directions

Arguably, the most obvious direction to move an approxiorati® is in the direction of steep-
est descent. That is, to mox& in the direction of the negative gradient. The iterationdtiom
for this method, calledradient descenbr juststeepest descerns

xkFL — X0 _ g/ (x() (6.20)
which, by using Eqg. (6.19), can be formulated as

xH = x® 4 a(b— Ax®) (6.21)

The step lengthu is chosen such that the gradient of the new approximatitix<t)), is
orthogonal to that of the old approximaticii(x(¥)). This ensures thad*+?) lies on the lowest
possible location along the line defined by the steepesedeést positionx*).

Steepest descent has the disadvantage that it tends td seggEsain similar directions. This
can be clearly seen in Figure 6.5 where a large number of &egjuired since each new
solution is thrown back and forth between the two sides ofdhg valley, only slowly moving
towards the minimum point.

A much better strategy would be to choose search directia@isio not repeat a previously
used one and makes sure that the step taken in each direci@s@any more movements in that
direction unnecessary. By using orthogonal directidaé?, dV ... d(™D}, there can be no
repetition of any direction and the correct answer is founa steps, whera is the number of
unknowns. For each step taken, the length of the step sheuttidisen so that the error vector

32 Chapter 6. Methods for Solving Systems of Linear Equatios

Figure 6.4: The search line and the gradient at several points along ithe | The minimum
along the line is found when the gradient is orthogonal togkarch line.

a=»

Figure 6.5:Convergence is slow when similar directions are used sétieras.

of the new approximation is orthogonal to the search dioeciie.e"d®¥) = 0. This will bring
the new approximation as close as possible, along the sdaegdtion, to the exact solution.
Unfortunately, since knowing the error would be the sameramving the exact answer, this
method can not be used directly.

Instead of requiring orthogonality between the searchctizes, a practical formulation is
obtained by requiring\-orhogonality Two search directiond®andd(!) areA-orthogonal if

(d®)Tad) =0 (6.22)

This in turn changes the requirements on the step lengtichagtiould be such that the new
error isA-orthogonal to the search direction:

(d®)Taek+l) = (6.23)
This can be used to find the step length:

(d®)T Akl =0 (6.24)
dTAEM +a®d®) =0 (6.25)
0T pelk)
W (dY) Ad
T T) TAd® (6.26)
KTk
W _ (d¥)r
a® = oy AW (6.27)
(6.28)

The search directions are built from the residuals at eafation, where the initial search
direction is the residual of the initial gues¥). For each iteration, the search direction to use
in the next iteration is a linear combination of the residaatl the current search direction
according to the following:

6.3. The conjugate gradients method 33

dk+D) — p(kt) 4 gkt Do) (6.29)
where
(K+D)\T - (k+1)
k+1) _ (r) r
B() IT® (6.30)
and
r©®=p—Ax© (6.31)
rtD) (k) _ gk ag®) (6.32)

6.3.2 Algorithm

The complete CG algorithm is given in Algorithm 6.3.1.

Algorithm 6.3.1 The Conjugate Gradient algorithm

GivenA,b,x(©

10— p— AxO

40 _ ;0

k=0

repeat
o) — (rK)TrK /(d00)T AW
xk+1) — x(®) 1 K gk)
(kD) 0 _ g9 ag®)
BUHD) — (1 (k1)) T e /()T (0
dlctD) — (kD) gDl
k=k+1

until |[r®&Y]| is small enough

Unlike Jacobi and Gauss-Seidel, CG is netr@oothingnethod, meaning that some compo-
nents of the error term might increase after an early itematl his manifests itself as jitter in a
plot of the error and because of this, CG may return very inate results if too few iterations
are performed.

6.3.3 Preconditioning

Preconditioning is a technique to increase the rate of agevee of CG. Instead of solving
Ax = b directly, one can solvil~1Ax = M~1b whereM 1A has a lower condition number than
A andM is called the preconditioner. There are many ways to cidateut a simple method is
to us a diagonal matrix whose elements are the same as thendiaglements oA.

The algorithm is only slightly changed to make use of the pditioner, inserting it at ap-
propriate places. Itis listed in Algorithm 6.3.2.

34 Chapter 6. Methods for Solving Systems of Linear Equatios

Algorithm 6.3.2 The preconditioned Conjugate Gradient algorithm

GivenA,b,x©
r@ —p_Ax©
d©® — m-1, 0
k=0
repeat
ak — r(k))TMflﬁk)/(d(k))TAd(k)
(kD) — y(K) ¢ (R (k)
(k1) — (K _ g ag®)

until ||r&Y|| is small enough

6.4 Convergence

The Jacobi and Gauss-Seidel methods are similar and hailarsimnvergence criteria. For
both methods, strict row diagonal dominance is sufficientcfnvergence [15]. That is, for
every system matrid where

lai| > [aij] (6.33)
; j

is true for every, i.e., every row, Jacobi and Gauss-Seidel both convergaddition, Gauss-
Seidel is guaranteed to converge to the solution even feesyssthat lack strict row dominance
if the system matrix is positive-definite. However, this @ mecessarily true for Jacobi and
because of this, some problems that Gauss-Seidel can salgesJacobi to diverge.

An example of one such matrix is

3
A=| 2
2

which is both symmetric and positive-definit

Jacobi iteration matrix foA is
0 -2/3 -2/3
T=| -2/3 0 -2/3 (6.35)

—2/3 -2/3 0

To determine if a recurrent applicationdto a vector will converge or diverge, the eigenvalues
of T must be inspected. If the aboslute value of any eigenvalgeeater than one, then Jacobi
fails. The eigenvalues are found by finding the roots of tteratteristic polynomial

2
2 (6.34)
3

O NDWN

but not slyicow diagonally dominant. The

4
3
which are 2/3 and -4/3. The spectral radiusTak therefore 43, which is larger than one and
causes Jacobi to diverge.

For CG, a symmetric positive-definite system matiis both required and sufficient for
convergence [48].

det(Al = T) =A%— 2\ +16/27 (6.36)

Chapter 7

Implementation

In this chapter the implementation of the four main partshef $ystem is described. The first
section describes the bulk of the fluid simulation, whichudes data structures, the ordering
of events, state updates, and how to include a fluid simulatito an application. The second
section concerns the collision detection part and includevations for why a particular method

was chosen and an in-depth description of how it works. Tixé sextion describes the solver
and the final section the demonstrator, including fluid setigpr interactions, and rendering.

7.1 Constraint fluid

The constraint fluid library consists of a stack of classesfanctions as shown in Figure 7.1,
and at the highest level is ti@@nstraintFluid class. A fluid simulator is created by creating a
new instance of this class and it is the interface that théegijon uses to communicate with the
fluid simulator. The second layer of the stack is the helpegsds that the top level class uses to
perform the different parts of the fluid simulator. Two ofsleéelpers, th€ollisionDetector

and the different types of solvers, are described in coméagjans and the last will be given a
shorter description in this section. Itis the helper olgéleat launches the CUDA kernels, which
constitutes the last two layers of the stack. The helperctbjeall kernel wrappers which per-
form texture bindings, validity checks, grid block setugsd finally launches an actual CUDA
kernel, which is the last layer of the stack.

[ConstraintFluid]

Qnteg ratODCCOIIisionDetector)(Solver)

Kernel wrappers

C CUDA kernels)

Figure 7.1:The different parts of the library.

7.1.1 Application integration

This section contains a brief description of what is reqlibieinsert a fluid simulation into an
application. The text is not to be considered exhaustivesamnelxample application is supplied

35

36 Chapter 7. Implementation

together with the rest of the source code.

All the definitions an application needs in order to use thestaint fluid is supplied in
the header fileonstraintFluid.h . In this file, two definitions are of utmost importance to
the user. One is the definition of ti@@nstraintFluid class itself, but equally important is a
structure nameg@onstraintFluidParameters . This structure is used to control the behavior
of the fluid and is passed to ti@®nstraintFluid constructor. It includes parameters such as
the number of particles to be simulated, the size of the doertaall parameters used in Eq.
(4.7) and the strength of the gravity force. When the stmechas been filled, the application
can continue to create tt@onstraintFluid object. In addition to the parameters structure, a
solver must be specified. Ti@onstraintFluid class contains a publenum that defines the
supported solvers and one of these should be passed as ¢imel segument to the constructor.

When a fluid simulator has been created, only two method agdisequired to finish the in-
tegration with the application. The firstsepSimulation , which does a complete simulation
step, and the secondgstParticlePositionsVBO , Which returns the identifier of the OpenGL
vertex buffer where the current particle positions areestott is up to the application to render
the particles in an appropriate manner. There is curreotiupport for DirectX integration, but
the development effort required is limited to implementangubclass obenseBlockVector
that uses a DirectX vertex buffer for storage and replaceisieeofDenseBlockOpenGLVector
with the new vector type.

The simulator supplies a number of additional methods thate used to inspect the state
of the simulated fluid, for example the density violationseath particle, the distribution of
the number of neighbors among the particles and the numismadation steps performed. In
addition, some of the aspects of the simulation can be clibahgréng runtime. This is currently
limited to the gravity vector and the size and position of¢batainer.

7.1.2 Data structures

Two types of data structures are fundamental to the impléstien of the fluid simulator: a
vector and a sparse matrix. Vectors are used for storageogxfample, particle positions
and velocities, constraint violations, and the calculatagrange multipliers. It is important to
differentiate between vectors as the CUDA data type andiffezeht vector classes, which may

be a vector of for exampl#oat4 s. The sparse matrix is used only to represent the Jacobian
matrix.

Vectors

Vectors are the main data holders of the fluid simulatioralifpr All data related to a single
particle or a single constraint are stored in a vector. \fsatan be of two types, element vec-
tors and block vectors, and be stored in two different wapsmemory allocated by CUDA
allocations or as OpenGL vertex buffers. There is curremtlysupport for Direct3D integra-
tion. OpenGL buffers are used for particle positions andiince this allows an application
that uses the library to render particles efficiently thitotlge OpenGL callglVertexPointer ,
glColorPointer andglDrawArrays . Abstractions has been made though object oriented de-
sign and inheritance to allow any non-OpenGL code to usethestors without knowing where
the actual data is stored.

The difference between an element vector and a block vectbat the element vector is a
vector offloat s and the block vector is a vectorftffat4 s. The use of block vectors makes
it easier to find for example the position of a given partiahel anemory read and writes are
easy to coalesce since coalescing is achieved when eaeld thirea warp reads from or writes

7.1. Constraint fluid 37

to the index dictated by its thread ID. If simgdleat arrays were used, the threads of a thread
block would have to cooperatively read all required datah@ared memory, synchronize and
then distribute the data from shared memory to each of tleats. Since shared memory is a
limited resource, this approach may limit the number of kéothat can reside on an SM and
thus hamper the hardware’s ability to hide memory latency.

The vector class contains methods to fill the device memarg @aith data from host mem-
ory, read the content of a vector from device memory to hosharg, and print the content of
a vector to screen or disk. It can also supply a raw pointerWbDE& address space that can
be used in CUDA kernels to read from and write to the memoigycalied for a vector. The
OpenGL vectors can also supply tBeuint that identifies the buffer object and is a required
argument to OpenGL calls that use the buffer.

Sparse matrix

The sparse matrix class developed for this project is &iléo the requirements of the fluid sim-
ulation, designed specifically to hold the Jacobian mafor the particular set of constraints
used in this fluid simulation and optimized for matrix vecamd transposed matrix vector mul-
tiplication, which are the two most important matrix opéras used.

The layout of the matrix we wish to represent is as followse Watrix contains one row for
each constraint in the simulation and each row contains ok bf elements for each particle,
as described in Chapter 4 where the constraint fluid algaorithpresented. The particles in the
simulation can produce two constraints each, one densitgtraint and one non-penetration
constraint, and the matrix can therefore contain upna@vs. The density constraints are
multi-body constraints and the rows created by them mayethes contain several non-zero
blocks, but the rows created by non-penetration consgr@inty contain one non-zero block.
The ordering of the rows is arbitrary in general, but the ienpéntation always places the density
constraints at the top and the non-penetration constiaitit® bottom rows. Figure 7.2a shows
the layout of non-zero blocks.

The implementation makes some assumptions about and ingpose limitations on the
data stored in the matrix. First, the density constraint pithe matrix must be skew symmet-
ric, and second, that no row in the density constraint pamtains more than a preconfigured
maximum number of non-zero blocks. The assumption on skemreetry is no limitation in
the simulation since it holds true by the definition of Eq.5§4which defines the matrix, but
the limitation on blocks per row in density constraints canabproblem. In essence it means
that each particle can have only a limited number of neigblamid any neighbor found after
that limit has been reached is ignored. Because of the clemdision detection algorithm and
hashing function, the result is that particles with highsignwhich happens to particles with
many neighbors, are forced upwards. This is because neighbe inserted in hash key order
and lower particles have a lower hash key except for at thegdel roof. The actual limit is
configurable and is currently set to 32. Experimentationdtasvn that the maximum number
of neighbors in a typical simulation tends to stay arounddietwenties and rarely approaches
thirty.

The storage of the matrix is split into three parts: one ferbn-penetration constraints,
one for the diagonal elements in the density rows, and onthéooff-diagonal elements from
the same rows. The non-penetration and diagonal blocks@edsadloat4d arrays allocated
large enough to handle the worst case scenario where altraons are active at once. The
off-diagonal blocks are stored in a format called “simpéifiagged diagonal storage” [17]. The
format is a packed column major format where the first nom-bésck from each row is stored
first in memory, allocated as a single loftwpt4 array. Then the second non-zero block from

38 Chapter 7. Implementation

each row is stored and so on until the selected maximum nuofli@ocks has been reached.
Zeros are explicitly stored when a row runs out of non-zeozkd. Paired with the non-zero
blocks is an array of integers that specifies the column irdétxe stored block. The layout of
these integers in memory is exactly the same as the layonedfibcks they belong to. Also, the
sparse matrix class stores an array that contains the nwhblercks in each row. By inspecting
this value one does not need to read and operate on the extsathat were stored when a row
contained less than the maximum number of blocks.

One can view the storage format as a list of segments in mewloeye each row owns one
slot in each segment and there are as many segments as thraurmariumber of blocks per
row. When creating the matrix each row iterates over thezemo-blocks it has and places each
block in the next free slot owned by that row. The non-zereblat location(i, j) is written to
memory location

k=i+nc (7.1)

wherec is the number of non-zero blocks to the left of the currentblandn is the number of
particles. The valug¢ is written to the same locatiog, in the column index array.

The reason for choosing the simplified storage version wétiztes these extra zero blocks is
to simplify the creation process. Many other sparse stosajemes requires knowledge about
the whole matrix before any elements can be written, but amycian be created independently
of the others when using the simplified jagged diagonal gefarmat. This fits well with the
collision detection algorithm, which handles the creatibthe matrix, described in Section 7.2.

Increasing
adresses

ol

uf oo [wls

o [N [wlk[o]-|om|o|H

Figure 7.2:An example matrix and how it is stored in memory. a) The futrnaWhite blocks
are zero elements, red blocks are non-penetration blodkegngones are the diagonal of the
density section of the matrix and finally the blue blocks heedff-diagonal blocks of the same
section. b) The diagonal- and non-penetration blocks ameest as simple block vectors. The
off-diagonal blocks are stored in a column major format inregée long array. Paired with the
array is another array that, for each non-zero off-diagohkick, stores the column index in the
original matrix where that block belongs.

7.1.3 Arithmetic operations

All the algorithms used throughout the library uses a mudiét of operations on the vectors such
as addition, scaling, and subtraction. Most of these ariattut the operations that involve the
sparse matrix are not. The two operations used are matatemmultiplication and transposed

7.1. Constraint fluid 39

matrix-vector multiplication. In this subsection thesetaperations will be described along
with how they are implemented using the data structuresditred in the preceding subsection.

Matrix-vector multiplication

The matrix-vector multiplication performs the operation- Gx. It uses a matrixs of sizecx n
and a vectok of lengthn to produce a new vectgrof lengthc. Each element iy contains the
dot product between the input vector and one of the rows oinhgt matrix. Theith element
of y is the dot product ok and theith row of G. The size of the matrix is dictated by the
number of simulated particlas and is always & x n blocks. The multiplication operator is
only defined if the input vector has the same length as eachirr@wand thus the input vector
must be a block vector with blocks. The result will be an element vector of length The
algorithm for performing the matrix-vector product is givbelow whereG.d is the diagonal
blocks of the density constraints part of the mat@x is the off-diagonal blocks an@n is the
non-penetration blocks. The data tygeck used in the listing is actually one of the primitive
CUDA vectors, but renamed here for simplicity. Each CUDAetid computes one element of
y.

Figure 7.3 illustrates the matrix-vector multiplicatioperation.

Listing 7.1:y «— Gx

with one thread per particle{
/l'lndices are on the block level

int i = thread.id;

// Start with the diagonal block
block accumulator = G[i] = x[i]; [//Per element multiply

//Then loop over the remaining blocks

int rowLength = rowLengths[i];

for (uint itr = 0; itr < rowLength; ++itr) {
int index = itrsnumParticles + i;
int column = columns[index];

block G.block = Go[index];
block x_block = x[column];
accumulator += Gblock x x_block; //Per element multiplyadd

}
// Write the result
y[i] = sumElements(accumulator);

/I Finish with the nomrpenetration block
y[i+num_particles] = sumElements(@[i]«x[i]);

Transposed matrix-vector multiplication

The transposed matrix-vector prodyct— G'x is similar to the normal matrix-vector product
with the difference that each element in the output vegt@s created from columns of the
input matrixG instead of rows. Because of the definition of matrix-vectaitiplication, the
input vectorx must be an element vector of length &1d the result vectoyr is a block vector
containingn blocks.

Because of the block skew-symmetric property of the top bifatiie matrix, the content of
the columns can be found by iterating over the rows and negatl non-diagonal blocks. For
the lower half, the non-penetration block can be found,gssione in the normal matrix-vector

40 Chapter 7. Implementation

X n blocks

n blocks

I~

I R
<

G

Figure 7.3:Example of a matrix-vector multiplication. Blocks are aeld using the pattern as
described in Figure 7.2 with color gradients to simplify quemison with Figure 7.4

product, by reading a block from the non-penetration artaha@index dictated by the thread
ID.

Each time a row block is read, data from three columns of thieix@ is collected and three
components of the result vectpcan be updated.

Figure 7.4 illustrates the transposed matrix-vector ap@rand each CUDA thread executes
Listing 7.2, calculating one element of the output vegtor

Listing 7.2:y — G'x

with one thread per particle{
int i = threadid;

/] Start with the diagonal block
block accumulator = x[i]* G.d[i]; //Scale the block with the scalar found in x

//Then add the nonapenetration block
accumulator += x[i] * G.n[i];

// Finally loop over the remaining elements, negating them get a column instead of a row
int rowLength = rowLengths[i];
for (int itr 0; itr < rowLength; ++itr) {

int index itrsnumParticles + i;

int column = columns[index];

float x_value = x[column];
block G_block = Goo[index];
G_block = -G_block;

accumulator += xvalue x G_block; //Scale the block by the value found in x

}

y[i] = accumulator; //Write the complete block to y

7.1.4 ConstraintFluid class

The ConstraintFluid class does little work of its own. It is responsible for aliting and
initializing the data structures that are passed betwekrehebjects, such as particle positions
and velocities, and creating the helper objects themsdhaast uses for the bulk of the work.

7.1. Constraint fluid 41

2n

X
EEEEEEE NN

n blocks

GT

Figure 7.4:Example transposed matrix-vector multiplication. Bloeks colored in the same
way as in Figure 7.3.

When a simulation step is performed, the first step is to letcbllision detector process all
collisions in the scene. This fills the constraint violaBamctorg, the inverse of the diagonal of
the Schur complement matrif—2, and the Jacobian matri®. In the process, it reorders the
particle positions and velocities as described in Secti@n After the collision detection step
is complete, the elements of thevector may be reordered to match the new ordering of the
particles. This is required for warm starting, which cuthgis done only for the Jacobi solver.
Next the solver is called and depending on which solver isl uddferent parts of the sim-
ulation is performed. The simplest solver, Jacobi, simglicalates and returns the Lagrange
multipliersA. The other solvers, CG and preconditioned CG, include siadates in their al-
gorithm. So when Jacobi is used, the solver call must bevieltbby a call to théntegrator
helper class. Thimtegrator ~ uses the Jacobian mati@ the Lagrange multipliers, and the
current system state to move each particle into its nex stat

7.1.5 Helper objects

The only class described here is thiegrator . The larger helper objects, the collision detec-
tor and the solvers, are described in their respectivesectater in this chapter.

Integrator

The Integrator is a simple class with a single purpose. Each simulation, stefess it has
already been done by the solver, thiegrator ~ uses Eq. (4.10) to apply all forces, external
and from the constraints, to each particle and updates tiielpgosition according to the new
velocity using Eqg. (4.11). These are implemented in a sikgtael, except for the transposed
matrix-vector producG’ A, which is done first.

7.1.6 Data representation

Since a fluid simulation is a very dynamic process where @agimove around unpredictably,
bouncing off walls and constantly interacting with new rdigrs, many of the data structures

42 Chapter 7. Implementation

used in the simulation must be updated every time step. Nenggeces of data that are most
important are the particle states, including positiphselocitiesv, and external forcef the
Jacobian matrixG, the inverse diagonal of the Schur complement maixcalled® 1, the
constraint violationg), and the Lagrange multiplie’s The particle state is the easiest to rep-
resent. Each of the three quantities is given a block vectareithe state of particles stored

in indexi of the vector. The other data structures are not so trivtedigdled. They all contain
one entry, block or single element, per constraint curyeatttive and the number of active con-
straints varies over time. However, there is a maximum nurabpossible constraintsp2and
the implementation prepares for the worst case scenarididiyating enough space to handle
all of them. Each such data structure is logically dividei itwo segments where the finst
positions contain data related to the density constraimtisthe remainingn positions contain
entries for the non-penetration constraints. Also, wittdch segment, the constraints are sorted
based on the particle that produced the constraint. Thabstioni in the structures contains
information about the constraint concerning the densityasficlei and positiom+i contains
information about the non-penetration constraint for tyme particle.

Because the structures contain entries for all possiblstcaints, they may contain “ghost”
entries that are not really there. This happens when a [gitidree from all walls, in which
case it has no non-penetration constraint, and when a lgamge no neighbors, in which case
it has no density constraint. In the mat@xthese entries show up as zero-only rows and in the
constraint violations vectay they are zero elements. th~1, ghost entries are marked with
inf. Theseinf markers are detected by the solvers and the correspondinmgest inA is set
to zero when one is found. In this way, the constraint forceated by the ghost constraints are
also forced to zero and they have no effect on the simulation.

The simulation parametebsandY described in Section 4.2.3 are treated as matrices in the
mathematical discussions throughout this text, but siheg &re diagonal matrices containing
only a limited number of distinct values, they are storedadas constantsY has the same
scalar value everywhere and can therefore be stored asla soagar, buk can be different for
both types of constraints and therefore requires two ssédaithis implementation.

Table 7.1 summarizes the data structures described indtii®n.

| Name | Symbol | Type | Size |

Positions p Block vector n
Velocities % Block vector n
External forces f Block vector n
Jacobian matrix G Sparse block matrix 2nxn
Inverse diagonal o1 Element vector 2n
Constraint violations | g Element vector 2n
Lagrange multipliers | A Element vector 2n
Constraint compliance Two scalars 2
Constraint decay rate| Y Scalar 1

Table 7.1:List of the data organized by the highest layer in the libratgck

7.2. Collision detection 43

7.2 Collision detection

This section describes how the collision detection algaritvorks and how the CUDA imple-
mentation is partitioned into kernels. Parts of the impletaton is based on the “particles”
example supplied with the CUDA SDK.

A number of simplifications have been done for the collisietedtion in this project. First,
objects are spheres and there is therefore no need for amginguvolumes. Also, all objects
have the same size which is the perfect situation for a spatiipning scheme with a uniform
grid. The memory requirements have been reduced by usirakpashing and the particle
sorting technique introduced in Section 5.1.2. Becaus@®farmulation of SPH, described
in Section 4.1, the collision detection should not returfeots that overlap, but instead report
collisions where one object overlaps ttenterof another object. This is achieved by reporting
only half the particle diameter to the collision detectidgoaithm. When two half-sized spheres
touch, two full sized spheres with the same positions wilicto each others centers. Thus, a
good cell size is the particle radius,

7.2.1 Algorithm

The input to the collision detection algorithm is a list offiae positionsp, the radius of the
particles h, and the size of the spatial gris, Output from the algorithm is a set of collisions,
but the collisions are not explicitly stored anywhere. Theyinstead used directly to create the
data structures required at a later stage of the simulatimnJacobian matri, the constraint
violationsg, and®~1, the inverse diagonal part of the Schur complement m&trix

The algorithm is based on a spatial hashing technique whereantroid of each particle is
used to calculate a cell hash key for the particle. The ligtasticles is then sorted based on
this hash, resulting in a list where particles residing msame cell are stored consecutively in
memory. The start- and end indices of each cell in the liseofiges is found during the sorting
process. Next the algorithm picks a particle and finds thadmmef the home- and neighboring
cells, as well as the start- and end indices into the sorstadliparticles for those cells. The
final step of the algorithm is to test the picked particle agathe other particles found in the
index ranges defined by the start- and end indices and reogrddisions in the output data
structures.

Figure 7.5 shows the different lists created and how theyedaged to each other and Fig-
ure 7.6 shows how the sorted hash list is used to reordersthef Iparticles.

7.2.2 Data representation

All data structures in the collision detection algorithre anplemented as arrays of one of the
primitive data typesint orfloat , or their corresponding vector varianist2 andfloat4

Table 7.2 show the arrays required, their sizes, types, drad tey represent.

The reason for usinfipat4 instead offloat3 for particle positions is that memory trans-
actions to and from global memory can be performed much nfficeemtly when using using
coalesced memory operations that are possible only if elechesmt accessed is aligned to 32,
64 or 128 bits, which #oatd is.

44

Chapter 7. Implementation

Particle Hash Sorted Cell Sorted
positions list hash start particle
list indices positions

> Fd B B

> A

> SN I

> >

> > i

> >

z N N

a b C

Figure 7.5:The different lists created dur-
ing the collision detection algorithm. a) A
cell hash/particle index pair is created for
each particle. b) The cell hash list is sorted
on hash key and the start of each section of
equal hash keys are found. c) The list of
particles is reordered to match the order-
ing of the hash list.

i Sorted Sorted
S pnae

0,2 >

0,0 >

1,1 >

>3,3 >

3,6 >

>3,5 >

5,7 >

5,4 >

cell’hash
particle index

Figure 7.6:When reordering the particles,
an entry from the hash list is inspected to
find the index from which a particle should
be read, which is shown in the right column
of numbers in the figure. Then the particle
data is read from that index and written to
the same index as where the hash list entry
was found.

7.2. Collision detection 45

| Data | Symbol | Type | Number of elements

Particle positions p float4 | numParticles
Sorted particle positions q float4 | numParticles
Hash list h uint2 | numParticles
Start indices S uint numCells
End indices e uint numCells

Table 7.2:The arrays used by the collision detection implementatitomg with their type and
number of elements.

7.2.3 Kernels

A high level algorithm description is given in Algorithm 712and the rest of this subsection
gives a short description of how each of the steps listed goAlhm 7.2.1 is implemented.

Algorithm 7.2.1 High level description of the collision detection algorith
Calculate the cell hash keyls, for the particles.
Sorth on hash key.
Reorderp, into g, to match the ordering df and find the start and end of each segment with
the same hash key.
Perform the narrow phase, creatigg, and® 1.

Hash key calculation

The hash keyk, of each particle is calculated from the cell indexof Eq. (5.1) with the hash
function:

k = (cx modwy) + (cy modwy)Wy + (C; modw;)Wy (7.2)

where[wy, Wy, W] is the number of cells in each grid dimension.

Since the cell index is wrapped if it is outside the cell gtltg hash values generated by
this hash function are unique for each cell within the calligstarting at O and increases up to
numcells— 1. The cell hash function can be seen as a three dimensiangb$hat is repeatedly
stamped over the simulated world with the first stamp’s loggener at thexo, yo, Zo] point used
in Eq. (5.1).

The cell hash, along with the index of the particle, is staea pair in a new listy, called
the hash list, that is created such that it is initially soma particle index.

Algorithm 7.2.2 Cell hash generation kernel.
Given particle positionp and cell grid dimensions.
i =thread.id
c— [LPXS;XOJ 7 {PyS*yYOJ 7 {ngzzoJ] Il Eq. (5.1)
k = (cx modwy) + (cy modwy)wy + (¢, modw,)wwy — // EQ. (7.2)
hi = [k, i]

46 Chapter 7. Implementation

Hash list sorting

Sorting the hash list is actually done with three kernels thgether implement the radix sort
algorithm. The source code for this was supplied with the GUEDK and is used with permis-

sion as stated in the CUDA SDK license agreement. A detaisdription of the algorithm is

available in GPU Gems 3 [22].

Radix sort is done by counting the number of occurrencesaf passible value for a given
radix in the input list and then reorder the list, using thesenters, so the list becomes sorted
with respect to that radix. The process is repeated for eaditx and at the end a fully sorted
list is produced.

The CUDA implementation is divided into three phases. Tt fihase performs the radix
counting, each thread block counts its own segment of thetiligt. The second sums these
to find reordering offsets for each entry in the list and thedtperforms the actual reordering,
reading an entry from the list, inspecting the value of theenut radix and storing the entry at
the location indicated by the radix counter. These thresghare repeated as many times as
there are radices, four in this case.

Particle reordering

This kernel has two responsibilities. It both reorders thiedf particle positions according to
the hash list and finds the indices into that list where eatlhstarts and ends. Each thread
requires access to the hash list entry read by the neighththiead. The entries are passed
between threads through the shared memory, labeledn Algorithm 7.2.3.

Algorithm 7.2.3 Particle reordering kernel.
Given the particle positiong and the hash lidh.

i =thread.id
ki, j] =h
men[i + 1] = kg
Synchronize.
ko = men]i]
if k1 # ko then
Sq =1
8, = |
end if
Qi = Ppj

Narrow phase

The final step of the algorithm is to find and record all catliss. For each particle, the kernel
finds the home cell and all neighboring cells and calculdtes hash keys. Then the hash keys
are used to index into the start and end indices lists to fiadéh of indices where particles that
the current particle may collide with are stored. For eaalhset, for each index in the set, the
kernel looks up the position of the other particle and penfoan exact collision test.

When a collision has been found, the density of the currenighais updated according to
Eq. (4.1) and Eg. (4.2), and one blodk,in the Jacobian matri is created using the upper
part of Eq. (4.5). Also, the diagonal blod, is updated by adding one term of the sum in the
lower part of Eq. (4.5) and an update to the inverse Schur &mgnt diagonad—! is made.

7.3. Solvers 47

When all collisions have been found, the final constrainiation is calculated according to Eq.
(4.4).

Algorithm 7.2.4 Narrow phase kernel
Given the sorted particle positiogsand the starts, and endg, indices for each cell.
i =threadid
®1=0b=0
p = mW(0,h)
for all neighboring cell do
k= (cx modwy) + (cy modwy)wy + (C; modw,)wWwy — // Eq. (7.2)
for all indicesj # i betweers, ande, do
d = distanc€d,q;)
if d < hthen
p=p-+mwW(d,h)

mE; %

b=—— 1 //Eq. (4.5)
d=d—b
o 1= 14b-b
Writebto G
end if
end for
end for
if &1 +£0then
_ o7ldd
m

Oi=p 1
Write?:ltoG

7.3 Solvers

Three iterative solvers have been implemented for thisgptojThe first, and primary, solver
is the simple Jacobi method and the others are two versioti'eo€onjugate Gradient (CG)
method.

The equation to solve, described in Chapter 4, is formulated

1 1 3 4., M
(EGG +Z)}_ (Y—I)GV—EYg—EGf (7.3)

and should be solved for. The right hand side can be pre-computed and is for the sake of
clarity henceforth denoted by, The equation to solve is thus

(EGGMZ)A:b (7.4)
m

whereG is a sparse, up tor< 3n matrix,mis a scalar constant arxda dense diagonakh«< 2n
matrix. BothA andb are dense vectors.

48 Chapter 7. Implementation

What complicates matters slightly is the fact tk&®" is significantly less sparse th&h
That, in conjunction with the arithmetic cost, makes it usicble to explicitly create the com-
plete system matri>|s}]GGT + 2. Instead, the full expression is used and algebraic maatijpuis
are done to reduce the number of operations required foriesakion.

As noted in Section 7.1.6, the system may contain invalithelgs, called “ghost” entries.
It is the responsibility of the solver to ensure that any elatrin A dependent on such ghost
entries are set to zero.

7.3.1 Jacobi

The main reason for choosing the Jacobi solver is that igkliziparallel and therefore fits well
with the CUDA architecture.
The definition of the Jacobi method, as described in Sectibn$

AKD — o-(b— RAM) (7.5)

where® is the diagonal part of the system matrix @dontains the rest of the elements. Since
the full system matrix is inaccessible, Eq. (7.5) must beritesm using the components from
Eq. (7.4). First, observe that

leaTis—54 tas T4 LeaT - L T
mGG +X=3+ mdlag(GG)+mGG mdlag(GG) (7.6)

o] R

wherediag is a function that returns the diagonal elements of a matdsing the definitions
from Eqg. (7.6), the Jacobi iteration function is found to be

-1
AL — <z+ %diag(GGT)> <b - <%GGT - %diag(GGT)) A<k>) . @

Since
1., -
—adlag(GG)=2-—®, (7.8)
we can rewrite Eq. (7.7) as
-1
AkD — <z+ Hl]diag(GGT)> <b - (%GGT +3- cb)Mk)) (7.9)
Restoring alkbs gives
AKHD — -1 <b (%GGWZ@)A(@) (7.10)
which can be rewritten as
AW — A0 1 (b—Z)\(k) - %GGTA“()) (7.11)

In the end, what is needed is the inverse of the diagonal panecsystem matrixp—1, which
stays constant throughout the solver process, and théyabikereate the produc%gGGT)\. The
diagonal matrixp~1 is created by the collision detector and supplied to thessals an element

7.3. Solvers 49

vector and%]GGT)\ is created in several steps, first forming— G"A and theny < Gx using
the matrix-vector operations described in Section 7.1dBfarally scalingy with the scalarn%.

To improve stability of the simulation, only half of the ugdaf Eq. (7.11) is added, result-
ing in a relaxed Jacobi implementation.

Algorithm

The input to the solver is the Jacobian mat@ixthe constraint violationg, and the inverse Schur
diagonald~1, all created by the collision detector, as well as the padicurrent velocities,
the external forces, and the simulation parameters destiibChapter 4. The solver starts by
creating the right hand side and then enters the iteratiop, lavhich it runs a fixed number of
iterations. A discussion on the number of required iteretiis given in Section 8.3. In the loop,
the matrix-vector operations are performed and the resatbred in temporary vectors and then
the iteration kernel is launched. The kernel performs trauation of Eqg. (7.11) that remains,
i.e., the per-element additions, subtractions, and nligéifons that are required to finish the
update ofA.

Algorithm 7.3.1 Jacobi solver
GivenG,g,v,f,mAt)Y, 27)\(0)

t1=Gv
tr = Gf
b= (Y— |)'[1— %Yg— A—n,t]'[z
iters=0
repeat
iters=iters+1
1= G"A
t, =Gty

A=X+0.5(d1(b— A 1t;))
until itersexceeds a maximum limit

The iteration kernel is launched with one thread per comg{ravhich is the same as the
number of elements in the vectors of Eq. (7.11). Thus, eaefathreads one element from each
vector, performs a series of scalar multiplications, add#, and subtractions to finally produce
a piece of the new solution for the Lagrange multipliersTo handle the ghost constraints, the
kernel first reads the elementdr ! and checks for thenf marker. If found, the kernel sets its
element in the new to zero and returns immediately.

7.3.2 Conjugate Gradient

To increase development speed and make comparisons withférence Matlab implementa-
tion easier, the CG solver was implemented using as many BlallSas possible. BLAS, Basic
Linear Algebra Subprograms, is a standardized set of dpasabn matrices and vectors and a
CUDA implementation is supplied with the CUDA SDK. The implentation can of course not
work on the application specific sparse matrix format, sorxaector operations must use the
operations described in Section 7.1.3.

The listing in Algorithm 7.3.2 details the steps of the algon.

50 Chapter 7. Implementation

Algorithm 7.3.2 The implemented Conjugate Gradient algorithm

GivenG,g,v,f,m,At,Y,Z,)\m)
RHS = mv + Atf

RHS = — £ Yg+ YGv
v=21(RHS+GA)

Adir =2A+Gv—RHS

r= *}\dir
W=r-r
iters=0
repeat
fair = —G' Agir
Vair = afair
O=—W
fdir Vdir +Adir - ZAdir
A = A+ OAgir
V =V+ aVyir
r=RHS-Gv-2A
Wy=r-r
B="
w
Adir = —T + BAdgir
W= Wy

until wis small oriters exceeds a maximum limit

7.3.3 Preconditioned Conjugate Gradient

The preconditioned version of the conjugate gradient sadweery similar to the plain CG solver
described in the preceding subsection. The differenceimtiiusion ofd ! as a preconditioner.
The diagonal matrigo— contains special markers for the so called ghost entrieshase must
be set to zero before they are used in any BLAS call. Settiagtto zero ensures that the final
solution forA will contain zeros at the same locations.

The implemented algorithm is listed below.

7.4 Demonstrator

The demonstrator is implemented as a separate applicdtairiricludes the constraint fluid
library and uses it to run a fluid simulation that is renderadhe screen. It uses OpenGL for
the rendering and GLUT for user interactions. Itis implebadras a startup function that creates
the ConstraintFluid object, a set of callbacks required by the rendering systarassmall
set of application specific classes that control the fluid madtes the render calls to OpenGL.
The startup function also reads the given command line aggtsiby which the user can control
some aspects of the simulation, such as the number of gartitie size of the container, the
simulation frequency, and more.

One of the classes is a simple wrapper over the fluid simulatis purpose is to control if
the fluid simulation should be updated or not for each frantdfeso, make thatepSimulation
call to the fluid. The other class handles rendering. Eachdtafter the fluid wrapper has had
its chance to run a simulation step, the renderer fetchesetiex buffer object identifier as-
sociated with the buffer storing particle positions and shene for the buffer storing particle
colors. It then renders the particles using a shader progugplied with the CUDA SDK and

7.4. Demonstrator

Algorithm 7.3.3 The implemented preconditioned Conjugate Gradient alyaori

RHS, = mv + Atf
RHS = — 2 YO+ YGv
A, € epre,d,r,V,Vimp=0
Vimp= &(G"A+RHS) —v
r = GVimp+ ZA
e=RHS-—r
eore = P 1e
di =epre-€
h=d;
iters=0
repeat
iters=iters+1
B=dy/dy
di=do
d = epre+ d
Vimp = nl,]GTd
r = Gvimp+2d
y=d-r
A=A+ad
e=e—ar
eore = P 1e
do = €pre-€
until dy is small oriters exceeds a maximum limit

52 Chapter 7. Implementation

used with permission as stated in the CUDA SDK end user le@greement. The end result
is that particles are rendered as spheres colored by thentwensity. By default, the radius
of the rendered spheres are set to half the influence radhis.nfeans that spheres that barely
touch each other represent particles that have a very anflakéhce on each other, but also that
overlaps between particles are larger than they appeas.ighiost apparent in the splashes of
the screen captures in Section 8.4.

Chapter 8

Results

The focus of this project is performance and the goal is taukite hundreds of thousands
of particles at interactive rates. However, no specifics gigsn in the specification on the
number of frames per second that is considered interaeties.r For the sake of this discussion,
anything more than ten frames per second will be regardedtesactive. The following two
sections discusses how well this goal has been met, andats® scalability limitations on the
number of particles that can be simulated. In particulés the memory requirements that poses
a hard limit on the size of the simulated system. In the ladic®, the demonstrator application
is evaluated and compared to the goal formulations thatioreitt

8.1 Performance

A series of tests have been conducted and the time requirddfdifferent parts of the library
measured using the timing capabilities of the CUDA devick tests were run on an NVIDIA
GTX 280 graphics card hosted by an Intel Core i7 processoe tithings only include the
simulation itself and not other aspects of the applicaticzhsas rendering and user interaction.

The tests were run with an increasing number of particlesgolanside a container with a
square bottom large enough to create a fluid between twedtthinty particles deep, if the test
contained enough particles to do that. The Jacobi solveiused exclusively for this test, see
Section 8.3 below for a performance comparison betweeniffexeht solvers, using twenty
iterations per time step. The simulation frequency wasethiendred time steps per second and
the simulation parameters set according to Table 8.1. TaBlésts the test configurations that
were run. Each simulation was run for several hundred tirapssuntil the fluid had calmed
down and ten frames after that were timed. All ten data p@rsplotted in the the following
graphs.

The series of figures that follow illustrates the resultshefse tests. First, Figure 8.1 shows
the time required for the whole simulation update, countedhfthe beginning of the call to
ConstraintFluid::stepSimulation() until the return to the application. The graph shows
the total time, as well as the time required for the individoerts. It is clear that the solver
requires the most time, followed by the collision detectiData reordering and state update are
negligible. The figure also indicates a clear linear refeiap between simulation time and the
number of particles. Figure 8.2 shows the total time per kited particle. It shows that more
particles let the application utilize the parallel hardevarore efficiently and that at least 25,000
particles should be simulated for high efficiency.

53

54 Chapter 8. Results

Time for one simululation step Time per particle
[0
% 500 Tt ::_, 1E+01
g 400 — == Solhe © 1E+00
o = Find collisions S‘
2 300w pnegrate g 1E01
= V' Reorder =
£ 200 é 1E-02
.£ 100 o 1E-03
© ?
E 0 —8 o 1E-04
= 0 200 400 600 800 1000 E 0 200 400 600 800 1000
Thousand of particles Thousands of particles

Figure 8.1: The time required to perform a Figure 8.2: The time required to perform a
state update for an increasing number of par-complete update divided by the number of
ticles. The time for the four components of asimulated patrticles.

state update is also shown.

The remaining figures divides the data sets of Figure 8.1th#o respective components.
Figure 8.3 shows how the time spent in the collision deteistalistributed. The most costly
operation for the collision detector is the narrow phasesneteach particle is tested against its
neighbors and the output data structures are created. Dunplementation details in the timer
framework created for this project, the timings for the solgan not produce timings for each
individual solver iteration. Instead, the time for all sehiterations is returned and compared
with the time to create the right hand side, which is shownigufe 8.4. Figure 8.5 compares
the cost of one solver iteration with the other solver-edatperations by dividing the recorded
time for the solver iterations by the number of iterationsct®n 8.3.1 contains a more detailed
discussion about the time requirements of the solversllizirdgure 8.6 shows timings for the
operations performed by the integrator.

Execution time for collision detection

100
»=Total
80 == Narrow phase
== Sort
60 V" Reorder
B Calc hash

40

20

Time in millisecons

0 200 400 600 800 1000
Thousands of particles

Figure 8.3: Timings for the collision detection. The narrow phase, whitie output data is
generated, is by a large margin the most costly operation.

8.1. Performance 55

Execution time for Jacobi Awerage execution time per iteration
350 35
»>=Total »=Total 1 iter
® 300 & Solve o 30 =& Solvefiters
o = G*welocities © = G*velocities
S 250 == Grexternal s 25 | = Gexernal
o forces O forces
3 200 ¥ Right hand 3 20 V- Right hand
% side é side
£ 150 g 15
£ 100 =10
) ()
E 50 E s
0 —— — 0 % v
0 200 400 600 800 1000 0 200 400 600 800 1000
Thousands of particles Thousands of particles

Figure 8.4: Timings for 20 iterations of the Figure 8.5: In this graph, the time for the

Jacobi solver. The iterations are significantly solver iterations has been divided by the num-

more expensive than the creation of the rightber of iterations to make a comparison be-

hand side. tween a single iteration and other parts of the
library possible.

€ 0.0001
T 4
Frequency 300 Hz
Solver iterations| 20

Table 8.1:Simulation parameters for the performance tests.

To conclude the performance section, the following wasesdtatout performance in the
Problem statement section of Chapter 2.

The primary goal of the project is to have a working demortstréor the fluid that can
simulate hundreds of thousands of particles at interaatites and even larger systems at non-
interactive rates.

The tests have shown that 100,000 particles can be simwdatdabut 20 frames per second
and 250,000 particles at about 10 frames per second. Whilidin real time, this is still
considered to be interactive. The test containing one anilparticles is an example of what
is referred to as an “even larger system” in the problem dgsen and this scenario can be
simulated at 2.5 frames per second.

8.1.1 CPU comparison

A performance comparison has been made with a CPU impletm@mtvailable at Algoryx.
The CPU implementation uses a Gauss-Seidel solver, parfgrine iterations per time step,
and was run on a 2.8 GHz Xeon processor. Prior usage of the @BédIisimulator has shown
that five iterations are sufficient for stable simulation wiiging a Gauss-Seidel solver and five
iterations are therefore used here as well. The results finese tests are shown in Figures 8.7
and 8.8.

56 Chapter 8. Results

Execution time for integrator

14 v
v
§ 12 "';I;]?:;Irate
Qo 10 = "G lambda
[&]
o 8
= Y
é 6
e 4 v
(]
2 2
= 0
0 200 400 600 800 1000
Thousands of particles
Figure 8.6:Timings for state updates.
| n | Container size (m)] n | Container size (m)
1 0.03 1,000 0.15
2 0.03 5,000 0.3
5 0.06 10,000 0.45
10 | 0.06 25,000 0.6
25 | 0.09 50,000 0.9
50 | 0.09 100,000 | 1.2
100 | 0.09 250,000 | 2.1
250 | 0.09 500,000 | 2.7
500 | 0.09 1,000,000| 4.2

Table 8.2:Number of particles and container sizes for each perforredast.

Tests were run with up to 250,000 particles and it is cleart GPU implementation is
faster, even with the difference in the number of solvertiens performed. Figure 8.8 shows
the speedup that the GPU implementation gives compare@tGBJ implementation. As the
size of the system increases, so does the speedup and fargbstlsystem, 250,000 particles,
a speedup of 50 was attained.

For comparison, the execution time of one solver iteratibthe CPU Gauss-Seidel solver
is graphed together with the execution time of one Jacotatitan for the GPU implementation
in Figures 8.9 and 8.10. In this case, the speedup was ewgar land approaches 100 for the
systems containing 100 thousand particles or more.

8.2 Memory usage

Figure 8.11 shows how the memory consumption increasebdquerformed tests. Clearly the
Jacobian matrix requires the most amount of space at alrb08iB for one million particles.
Second largest is color data at about 45MiB and after thatata buffer is much larger than
15MiB.

8.3. Solver comparison 57

Execution time CPU v GPU CPU vs GPU, speedup
«» 6000 60
©
[
Q
S 4000 a 40
@ 3
= 19
£ 2000 Q 20
-:]5) n =¥ Speed up
£ 0 P P P4 0
= 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Thousands of particles Thousands of particles

Figure 8.7:Simulation time for the CPU and Figure 8.8: The speedup achieved for the
the GPU implementations. The GPU versionCPU comparison tests.
is significantly faster.

CPU vs GPU, one solver iteration CPU vs GPU, speedup for solver iterations
w» 400 150
g = CPU
Q 300
2 a 100
2 200 3
E 8 s0
c 100 &
= == Speed up
(]
E O O ¢ 0
= 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Thousands of particles Thousands of particles

Figure 8.9:Execution time for one solver it- Figure 8.10:Speedup for the solver iterations.
eration of the CPU and the GPU implementa-
tions.

8.3 Solver comparison

This section compares the performance of the differenesslthat has been implemented, and
also makes a qualitative comparison between them to metwhy Jacobi was chosen as the
primary solver.

8.3.1 Performance

Figure 8.12 shows the cost, in milliseconds, to run the seleom the one million particles

performance test with an increasing number of iterationkil&\Jacobi is faster than the other
two, the difference is not significant. For a given numbertefations, Jacobi requires about
20% less time to complete. To show the cost per iterationuréi@.13 shows the average
time per iteration for the same scenario. The reason for gueedise in time per iteration is
because the one-time cost of creating the right hand sideciaded, a cost that diminishes
with increasing number of iterations. A profile of a solvarition in a simulation involving

one million particles is shown in Figure 8.14, where Jacoini G are compared. They both

58 Chapter 8. Results

Memory consuption

& Total
1000 Joip
—~ 900 < colors
2] & positions
é 800 =0 velocities
- 700 V- externalForces
£ 600 &= violations
o = shurDiag
é 500 X sortedPositions
G 400 4 sortedVelocities
© o Hash list
g 300 =¥-Cells
= 200 =& \Work area
Q 100 = Right hand Side
= 0 - 4 ﬁ ~¢+Lambda
- X Work area
0 200 400 600 800 1000 = work area

Thousands of particles

Figure 8.11:Memory usage for the different buffers.

contain one set of matrix-vector and transposed matrixevenultiplication and it is clear that
it is these two operations that dominate both solvers.

Time comparison for solvers Awerage time per iteration
[2]
» 10000 2 25
° =CG 8
S 8000 = preconditioned o 20
3 cG 2
S 6000 iy = 15
= *CG
€ 4000 £ 10 == preconditioned
£ 2000 e 5 ceG
[0) = & Jacobi
£ 0 F o
= 0 100 200 300 400 500 0 100 200 300 400 500 600
Number of iterations Number of iterations

Figure 8.12:Timings for an increasing num- Figure 8.13:Average time for each solver it-
ber of solver iterations. eration. Timings include startup overhead,
which produces the decreasing graphs shown.

8.3.2 Convergence

The first solver to be implemented was Jacobi, since it isithplest solver and the one easiest
to map to the highly parallel CUDA platform. However, it peg/more difficult than expected
to get stable simulations and one of the aspects that waedtespin order to find the cause
of the instabilities was the solver. A set of Matlab programad already been written to ver-
ify that the CUDA Jacobi solver produced the same results dascabi solver that had been
implemented in Matlab and these Matlab programs were egtbtalinclude other solvers as
well. Two solver methods were chosen for the comparison. firbiewas Gauss-Seidel, since
successful constraint fluid simulations has used this solVae second was Conjugate Gra-
dient, CG, since it has been implemented for the CUDA platfby others, as mentioned in

8.3. Solver comparison 59

Timings Jacobi Timings for CG
Time distribution for one iteration Time distribution for one iteration
18 18 B m_c scal
51 1 e
214 O iterate 2 14 En 3 -
5 S n_3_b copy
Q12 B Gvector g 12]
0] mGT 2 n_3_b saxpy
210 wctor | = 10 Hn-3_bdot
E 8 v E 8 On_3_bscal
§ 6 ; 6 B G vector
W G*T vector
E 4 e 4
2 2
0 0

Figure 8.14: Profile for one solver iteration of Jacobi and CG. The matrpeations are the
most costly operations.

Section 2.5. The actual Matlab implementations used wareddn the Scientific/Educational
Matlab Database [13].

The errors discussed in the following text and shown in theréig below have been created
by importing all data generated from the application intalistaand there calculated as

[|SA —Dbl|2 (8.1)

This expression is evaluated once for each solver andittarat

Prior testing had shown that fluid instabilities always aced in areas of high density and
the comparison with the Matlab solvers were therefore daivggua small scene with a succes-
sively denser fluid. The result from the first run is shown igufe 8.15. The setup for this
test was a normal fluid with the highest density of any partimting 3% too high. The figure
show that Jacobi and Gauss-Seidel perform very similar bad@G, after some fluctuations,
produces a very accurate result. As the density of the fluidcieeased, Jacobi produces less
and less accurate results, as shown in Figure 8.16 wherevéinage fluid density was 188%
too high. All three solvers converged, but Jacobi convegjeder than the others. This is il-
lustrated more clearly in Figure 8.17 and 8.18 where theefoy Jacobi and Gauss-Seidel are
shown with a shorter span for the vertical axis. The diffeeegrows as the number of iterations
increases, as seen in Figure 8.19. When the fluid is furthmpoessed, as in Figure 8.20, Jacobi
starts to fail. Both Gauss-Seidel and CG can produce theedesgsult, but the Jacobi solver
bounces between two very inaccurate solutions. As the tjeissincreased a little more, to
217% shown in Figure 8.21, Jacobi starts to diverge.

Unfortunately, the fast convergence of CG is not maintaiwbdn the number of particles
is increased and running any decently sized simulationgusia CG solver is painstakingly
slow, requiring several hundreds, up to thousands, oftitera for a thousand particles. A
preconditioned version of CG has been implemented to speéteLconvergence, but lingering
bugs makes it unusable at this point.

The reason for the instabilities in a normal fluid simulatiming the Jacobi solver appears
to be caused by the degrading accuracy of the Lagrange tiertip. As the fluid begins to
compress against the floor due to gravity, Jacobi startsddyme inaccurate solutions which
fail to properly counteract the compression, resultingverehigher densities in the next time
step and thus even less accurate constraint forces. As tisitydacreasesyx begins to loose
its diagonal dominance which eventually leads to divergenc

In addition, the low number of solver iterations limits tlate of pressure propagation in the
fluid as each Jacobi solver iteration only propagates ctioresto the solution a short distance
in the system. Consider a scenario where a rectangular bfditkd is falling towards the floor.

60

Chapter 8. Results

Error in result

Error in result
Density 3% too high

Density 188% too high

1E+002 oy 1E+002 !\"’ﬁ
1E-001 - == Jacobi SN il

- _ 1E-001 * \\
e \- ' 1 Conjugate e == Jacobi 0 -
= ~ Gradient = ' 1 Conjugate s
W 1E-004 ?+ 11 Gauss-Seidel W 1E-004 Gradient e
RN "1 Gauss-Seidel
1E-007 .

1E-007
0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
Iteration

Iteration

Figure 8.15:Rate of convergence for a nice Figure 8.16:Solver convergence for a com-

fluid. Jacobi and Gauss-Seidel produces simpressed fluid. Jacobi produces less accurate
ilar results, but CG is considerably better.

results compared to Gauss-Seidel in this sce-

nario.
Error in result

Density 3% too high

- 1E+001
== Jacobi

¥ Gauss-Seidel

Error in result

Density 188% too high
1E+001

‘l“|||lll
R
““||||ll

o
0

o,
%,

Error

4,
LTI I I I

Error

== Jacobi

:',,."
Teay,
lll,.,....'
'".,.
. L
"1 Gauss-Seidel

1E+000

1E+000
0 5 10 15 20 25 30 35 40

0 5 10 15 20 25 30 35 40
Iteration

Iteration

Figure 8.17:Comparison between Jacobi and Figure 8.18: Comparison between Jacobi and
Gauss-Seidel for a nice fluid. They both reachGauss-Seidel for a compressed fluid.

Ja-
a similar result, but Gauss-Seidel reaches itcobi does not manage to achieve the accuracy
with fewer iterations. Gauss-Seidel gives.

At the time step where the lowest layer of particles hits tberflthe Jacobi solver propagates
the effect of the collision two particle layers up for eaardttion. If the number of performed
iterations is too low, none of the topmost particles becomara of the event and continue
falling undisturbed. This further increases the density l@ads to a spongy fluid.

The number of Jacobi iterations required for a stable sitiirladepends on a number of
properties of the simulated fluid. As hinted above, a thigletaof particles requires more iter-
ations to propagate events though the whole fluid, and higkive velocities between particles
also increases the need for more iterations, since a higiecity gives deeper penetrations
when two particles meet and consequently higher densitiEgh of these problems can be
countered by reducing the length of the time step. Shomee Steps let the simulator restore
violated constraints earlier, and any constraint violatigll be smaller since particles can move
shorter distances between time steps. Also, the regulianizaarameteg can be increased to in-
crease stability in a fluid. The simulator becomes less fat@e restoring constraint violations

wheng has been increased, giving a system matrix that is moreaweldlitioned. The draw-

8.4. Demonstrator 61

Error in result

Density 188% too high
1,00E+001

1,00E+000
1,00E-001
1,00E-002
1,00E-003

L
LD
o
UT3
"
0
',,"'
L7}
o’y
n
o
"y,

Error

== Jacobi

Ty,
1y,
. aag,
"1 Gauss-Seidel ""'u.,,,"
"henygy,
LITH

0 50 100 150 200 250 300 350 400 450 500
Iteration

Figure 8.19:The difference between Jacobi and Gauss-Seidel increase®ee iterations are
performed.

Error in result Error in result
Density 196% too high Density 217% too high
e
1E+002 ”“N.,.,. 1E+002 \..,,,
‘M, ",
BN iy
. 1E-001 . . 1E-001 _ :
o == jacobi ey, o == Jacobi "y,
= '] . «~ "'," = ' 1 Conjugat ’ :,,"
W 1E004 G ~ W 1E004 Gradent | .
111 Gauss-Seidel ‘. 111 Gauss-Seidel .,
1E-007 o 1E-007 ~
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Iteration lteration

Figure 8.20:Rate of convergence for a highly Figure 8.21:When the fluid is compressed a
compressed fluid. While both Gauss-Seidelittle further, Jacobi starts do diverge.

and CG converges, Jacobi is oscillating be-

tween two very inaccurate solutions.

back is that the fluid becomes more compressible. Using thBgroation given in Table 8.1,

100,000 particles can be simulated with reasonable resnttsa million particles simulated if
high velocities and high piles are avoided. A reduction &f ttumber of iterations to ten will

still be able to simulate a million particles, but the deys#n locally increase significantly and
the fluid will never come to rest because of the excessivegpuass. Five iterations will pro-

duce spongy and unstable simulations even for 100,00Ccfzt@nd two iterations fails even
for 10,000 particles. One iteration can barely run 800 pldiin a stable simulation.

8.4 Demonstrator

The problem statement outlined in the beginning of this repdection 2.1, states that the
demonstrator should be able to visualize the fluid as it imdsimulated and also be able
to produce a dam break scenario.

The finished demonstrator can visualize the fluid in real tame also produce the dam break
scenario described in the problem statement. In additf@demonstrator enables the user to

62 Chapter 8. Results

give specifications on the fluid and the world in which it is glated. The user can supply
startup parameters to the demonstrator, through whichexXample, the number of particles,
the number of solver iterations, the size of the contained, the initial position of the dam
wall can be specified. During runtime, the user can have adunrinteraction with the fluid
by changing the gravity vector and initiating the dam bredke dam wall can be moved in
three ways. The first is the actual dam break, where the dafismaloved from its current
position to the far edge of the cell grid. Any particles thatrevstacked up behind the wall will
begin to flow towards the new wall position. The other two wallving operations initiate a
constant movement of the dam wall in either direction, eiggueezing the fluid together or
letting it flow outwards. It is not recommended to squeezefliid too tight, since that will
bring instabilities to the fluid, or to initiate a full dam lade when the dam wall is extended
outside the cell grid, since that may place particles far the wall. Deep penetrations create
large penetration forces, which in turn creates large vigdscand possibly instabilities to the
fluid.

Other features include continuous or single time steppitigeosimulation, camera controls,
display of the current frame rate and some state inspectibise fluid. Data that can be
inspected are the current particle positions, densitytcains violations and the distribution of
the number of neighbors each particle has. Also, the demaiostan print the memory usage
of the fluid, detailing how much memory is used for each pathefiibrary.

A screen capture of a dam break with 100,000 particles is shoWigures 8.22 to 8.27.

8.4. Demonstrator 63

Figure 8.22: A wall of fluid held back by a Figure 8.23: The dam has been broken and
dam. fluid is flowing out into the container.

Figure 8.24:The fluid hits the far end of the Figure 8.25:Due to gravity, the fluid comes
container and is being pressed upwards. falling down again.

Figure 8.26: The fluid is beginning to calm Figure 8.27The final wave.
down.

64

Chapter 8. Results

Chapter 9

Conclusions

The purpose of this maters’s thesis was to evaluate thenpegifice benefits possible by imple-
menting the constraint fluid method for the highly parallegghics hardware. The goal was to
simulate hundreds of thousands of particles at interacéites, which is currently not possible
on conventional processors. This report has shown thategdsf the simulation can be per-
formed in a parallel fashion and that the entire simulatitgiell with the architecture of the
target platform. The performance goal was reached sincendrd thousand particles can be
simulated in twenty frames per second, and a speedup of fity achieved compared to the
existing CPU implementation.

An important discovery that was made during the course oftiogect is that the Jacobi
method is not well suited to solve the systems of equatioasate generated during the sim-
ulations. Jacobi diverges during certain conditions ang tbauses instable simulations, in
particular in areas of high density. The CPU implementatidnich uses Gauss-Seidel instead
of Jacobi, does not have these problems.

9.1 Limitations

While the developed software can simulate the systems itesicin the problem description,
the lack of a working preconditioning for the CG solver is H@es limitation that leaves Jacobi
as the only practical solver. The significant part of theltsitaulation time that is taken by the
solver makes it a candidate for optimization efforts andntiagor time consumer in all solvers is
the matrix-vector operations. Any speedup achieved fadtuperations translate to an almost
equal speedup for the entire application when many iteratise performed. Also, the memory
requirements are quite large and imposes a hard limit on themum number of particles that
can be simulated. On the GTX 280 card used during the devaoptie maximum number of
particles is about 1,128,000, which requires 994MiB of mgnum the device.

In summary, to improve the performance of the applicatiowg area to investigate further
is the implementation of the sparse matrix and its operatéom the problems with the precon-
ditioning of the CG solver since an efficient preconditiap@an reduce the number of required
solver iterations significantly.

65

66 Chapter 9. Conclusions

9.2 Future work

Apart from the aforementioned optimization possibilifiggere are many more changes that can
be done to the library that will increase its usefulness.

The current implementation is the most basic simulatiorsiibs, the only simulated entity
is the fluid and the only thing it can interact with is an axigaéd box. To make the simulation
more useful, it is necessary to add interactions betweerldite and solids such as boxes,
cylinders and triangle meshes. The non-penetration ainttrcould be used to make the fluid
aware of the solids, but the current implementation woutdtse solid as a fixed wall and has
no way to push on it. In other words, things can not float. Aneradition to the simulation
that enables some interesting scenarios is to apply a haigpto the container. Both the level
and the normal of the floor can be found from the height map asating the non-penetration
violation from that will allow a designer to make non-flat fages that the fluid can flow on,
modeling for example a river in a landscape.

All simulated particles are currently created and posédbat the beginning of the simu-
lation and all of them are always updated each simulatiop. stdis makes particle emitters
impossible since there is no way to create new particlesenits have been made to run the
simulation on a subset of the particles and create emitieiadiuding more particles as the
simulation progresses, but unfortunately, initial attésrfpiled and other aspects of the library
were prioritized.

Regarding the lack of a mathematical foundation for the igraadunction used in the simu-
lator. While the choice of gradient function gives improwtability, it is not at all satisfactory
that the choice of kernel function is so arbitrary. This isi@portant area for future research
and, preferably, one would like to rely on a guiding physméhciple for deriving or choosing
optimal kernel functions.

Chapter 10

Acknowledgements

There are a number of people that have been essential to dhjeeps of this project. First |
would like to thank the supervisors of the project: Kennetidid from Algoryx and Lars Karls-
son at Umea University. Kenneth has taught me about fluidisitions, while Lars has made
sure I've understood everything and helped me to stay orseawith the project. In the darkest
moments, Claude Lacoursiére stepped in with his vast kexgd and experience in theoretical
matters and helped me understand and work around problemgiicountered, in particular
with the Conjugate Gradient solver. Emil Ernerfeldth, wkas tpreviously implemented the
constraint fluid method, has kindly answered all questitresiad and provided tips and sug-
gestions for the actual implementation. | would also likéhank Nils Hjelte, who went through
the trouble of creating the CPU timings used to compare thfepeance of my library with the
implementation already available at Algoryx. In additiafi employees at Algoryx have shown
their support in both technical, social, and instructivgrsydnelping me feel welcome every day.

67

68

Chapter 10. Acknowledgements

Chapter 11

Terminology

ALU - Arithmetic Logic Unit

Hardware that performs numerical calculations on integenivers.

AMD - Advanced Micro Devices

A semiconductor company that develops computer proceasarselated technologies.

ATl - Array Technologies Incorporated

A company developing graphics processing units. In 2006 mAdrged with AMD.

Cache

Very fast, but small, memory where frequently used data tmed temporarily to reduce the
number of accesses to the slower memories lower in the mehiergrchy.

CG - Conjugate Gradient

An iterative method used to solve systems of linear equstion

Constraint surface

The set of object positions where a constraint is satisfied.

CPU - Central Processing Unit

Unit in a computer that fetches and executes instructions.

CTM - CloseTo Metal

Hardware interface released by AMD in 2006.

CUDA - Compute Unified Device Architecture

A development platform developed by NVIDIA that gives praigimers direct access to the
computational hardware of CUDA-enabled devices throughallextension to the C program-
ming language.

Device

A CUDA-enabled hardware that executes kernel code.

FPU - Floating Point Unit

Hardware that performs numerical calculations on floatioigpnumbers.

DRAM - Device Random Access Memory

Memory physically located on a device.

GeForce

A family of graphics cards by NVIDIA designed for the entémtaent market, most notably
video games.

GPU - Graphics Processing Unit

Hardware that specializes in graphics-related operasank as geometry rasterization, trans-
formations, and texture filtering.

GPGPU - General-Purpose Computations on Graphics Procesy Units

69

70 Chapter 11. Terminology

The use of graphics hardware for non-graphics computations

Host

The CPU that launches kernels and performs memory copibe isast in a CUDA system.
Indicator function

A function that increases as a constraint violation is iasegl and is zero on the constraint sur-
face.

Kernel

Code in a CUDA program that is executed on a CUDA device.

Quadro

Family of graphics hardware targeted for Computer Aidedigire¢CAD) and digital content
creation developed by NVIDIA.

SIMT - Single Instruction, Multiple Threads

The architectural design of the Streaming Multiprocesdbash SM can only issue one instruc-
tion at a time, but each SM harbors several threads thategadifollow independent execution
paths.

SM - Streaming Multiprocessor

A hardware unit on a CUDA device that executes the threadshokad block.

SP - Scalar Processor

The cores of a Streaming Multiprocessor that perform sealdrmetic.

Stream

An ordered list of homogeneous data elemets.

Tesla

A family of hardware developed by NVIDIA based on the graghiards but optimized for
general-purpose computing.

Warm starting

Using the solution from the previous time step as the ingisdss for the current time step when
using an iterative solver.

Warp

A set of CUDA threads that physically executes in parallel.

References

[1] David L. Alexander. Can you compress a liquid (water)? bydge. Available
at http:/iww.physlink.com/Education/AskExperts/ae15.c fm?CFID=18054225\
&CFTOKEN=89305169 visited 2009-06-12.

[2] AMD. AMD *“Close to Metal” Technology Unleashes the Powef Stream Com-
puting . Webpage, 2006. Available attp://www.amd.com/us-en/Corporate/
VirtualPressRoom/0,,51_104 543 13744 ~114147,00.html , visited 2009-06-12.

[3] Owe Axelssonlterative Solution Methods€Cambridge University Press, 1994.

[4] Blaise Barney. Introduction to parallel computing. \jgalge, Lawrence Livermore Na-
tional Laboratory. Available dtttps://computing.linl.gov/tutorials/parallel
comp/ , visited 2008-06-15.

[5] Jon Louis Bentley. Multidimensional binary search saesed for associative search-
ing. Commun. ACM18(9):509-517, 1975. Available atvw.cs.cmu.edu/ ~ christos/
courses/826-resources/PAPERS+BOOK/p509-bentley.pdf , Visited 2009-06-18.

[6] Kenneth Bodin, Claude Lacoursiére, and Martin Ser@onstraint fluidsInternal report,
submitted for publication2008.

[7] Jeff Bolz, lan Farmer, Eitan Grinspun, and Peter Schro&parse Matrix Solvers on the
GPU: Conjugate Gradients and MultigridlCM transactions on graphic2003. Available
atwww.multires.caltech.edu/pubs/GPUSIm.pdf , visited 2009-06-17.

[8] Jeremiah U. Brackbill, Douglas B. Kothe, and Hans M. Reipg-lip: A low-dissipation,
particle-in-cell method for fluid flowComputer Physics Communicatiod$8:25-38, Jan-
uary 1988.

[9] Luc Buatois, Guillaume Caumon, and Bruno Lévy. Coneatrnumber cruncher - A
GPU implementation of a general sparse linear solitgternational Journal of Parallel,
Emergent and Distributed Systen#t, 2009. Available ahttp:/alice.loria.fr/
index.php/publications.html?Paper=CNC@2008 , visited 2009-02-15.

[10] Matthias Christen. GPGPU: General purpose computimg goaphics process-
ing units. Available athttp://fgb.informatik.unibas.ch/people/christen_
matthias/lectures/resources/PPT_SS08_CS311 GPGPU.pd f, visited 2009-03-05,
2008.

[11] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madk. Ponamgi. I-collide:
An interactive and exact collision detection system fogéascale environments. FPro-
ceedings of ACM Interactive 3D Graphics Confererpages 189-196, 1995. Available at
http:/www.cs.jhu.edu/ ~ cohen/Publications/icollide.pdf , visited 2009-06-18.

71

72 REFERENCES

[12] Keenan Crane, Ignacio Llamas, and Sarah TaB®U Gems 3chapter 30 - Real-Time
Simulation and Rendering of 3D Fluids. Addison-Wesley Bssfonal, 2007. Avail-
able athttp://http.developer.nvidia.com/GPUGems3/gpugems3_ ch30.html , vis-
ited 2009-06-17.

[13] Scientific/Educational Matlab Database. Iterativdvers. Available at http:
/Imatlabdb.mathematik.uni-stuttgart.de/files.jsp?MC _ID=3&SC_ID=5, visited
2009-07-20.

[14] David Kirk and Wen-mei Hwu. CUDA Textbook. Draft. Avaible athttp://sites.
google.com/site/cudaiap2009/materials- 1/cuda-textbo ok, visited 2009-04-16,
2008.

[15] James W. Demmepplied numerical algebraSIAM, Philadelphia, 1997.

[16] Marios D. Dikaiakos and Joachim Stadel. The k-d treacitre. Webpage. University
of Washington, Available dtttp://hpcc.astro.washington.edu/faculty/marios/
papers/perform/node3.htmI\#SECTION00021000000000000 000, visited 2009-06-18.

[17] J. Dongarra.Templates for the Solution of Algebraic Eigenvalue Prolsle Practical
Guide chapter Sparse Matrix Storage Formats. SIAM, Philadalp@®®00. Available at
http://www.cs.utk.edu/ ~ dongarra/etemplates/node372.html , Visited 2009-04-
30.

[18] Susan Eggers, Joe Emer, Henry Levy, Jack Lo, Rebecoan$tand Dean Tullsen. Simul-
taneous multithreading: A platform for next-generatioaqassorslEEE Computer spe-
cial: How to use a billion transistors1997. Available ahttp://www.cs.washington.
edu/research/smt , visited 2009-06-15.

[19] Kenny Erleben, Jon Sporring, Knud Henriksen, and HeBdhlmann. Physics-Based
Animation Charles River Media, Inc., 2005.

[20] Jeff Freeman. Kaboom: Multi-threaded fluid simulatidar games. Web-
page, 2009. Available dtttp://software.intel.com/en-us/blogs/2009/02/05/
kaboom-multi-threaded- fluid-simulation-for-games/ , visited 2009-06-27.

[21] R. A. Gingold and J. J. Monaghan. Smoothed Particle Hggnamics - Theory and Ap-
plication to non-spherical star&oyal Astronomical Society, Monthly Noticd81:375—
389, November 1977. Available attp://articles.adsabs.harvard.edu/full/
1977MNRAS.181..375G/0000375.000.html , Visited 2009-06-10.

[22] Scott Le GrandGPU Gems 3chapter 32 - Broad-Phase Collision Detection with CUDA.
Addison-Wesley Professional, 2007. Availableh#ip:/http.developer.nvidia.
com/GPUGems3/gpugems3_ch32.html , visited 2009-02-24.

[23] Dominic Goddeke. Languages and programming envimmsn Presenta-
tion Slides. Available atttp://www.mathematik.uni-dortmund.de/ ~ goeddeke/
arcs2008/outline.html , visited 2009-03-02.

[24] Takahiro Harada. Takahiro harada. Webpage. Availabhép://www.iii.u-tokyo.
ac.jp/ ~takahiroharada/ , visited 2009-06-17.

REFERENCES 73

[25] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kawehi. Smoothed Particle Hydro-
dynamics in Complex ShapeSpring Conference on Computer Graphiz07. Available
at http://www.iii.u-tokyo.ac.jp/ ~ takahiroharada/PDF/2007_SCCG.pdf , visited
2009-06-16.

[26] Takahiro Harada, Seiichi Koshizuka, and Yoichiro Kgwehi. Smoothed Particle Hy-
drodynamics on GPUs.Computer Graphics InternationaR007. Available atttp:
Iwww.inf.ufrgs.br/cgi2007/cd_cgi/papers/harada.pdf , Visited 2009-06-17.

[27] Mark Harris. GPU Gems 2: Programming Techniques for High-Performancap@s
ics and General-Purpose Computatjachapter 31 - Mapping Computational Concepts
to GPUs. Addison-Wesley Professiona, 2005. Availablbttat/http.developer.
nvidia.com/GPUGems2/gpugems2_chapter31.html , visited 2009-02-24.

[28] Mark Harris. Optimizing CUDA. Available dittp://www.gpgpu.org/sc2007/SC07_
CUDA_5_Optimization_Harris.pdf, Accessed2009-02-20 , visited 2009-03-15, 2007.

[29] Woosuck Hong, Donald H. House, and John Keyser. Adegarticles for incompressible
fluid simulation. Technical report, Texas A&M Universityd@7. Available atvww.cs.
tamu.edu/academics/tr/tamu-cs-tr-2007-7-2 , visited 2009-06-17.

[30] Philip M. Hubbard. Collision detection for interaatigraphics application$EEE Trans-
actions on Visualization and Computer Graphité3):218-230, 1995.

[31] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucédhailany, Jung Ho Ahn, Peter
Mattson, and John D. Owens. Programmable stream proce$3omgputer 36(8), 2003.
Available atwww.cs.rice.edu/ -~ rixner/kapasi_computer.pdf , visited 2009-08-12.

[32] Robert Klima. Numerics. Webpage, 2003. Availabldtit://www.iue.tuwien.ac.
at/phd/klima/node18.html , visited 2009-07-06.

[33] James T. Klosowski, Martin Held, Joseph S.B. Mitchidiknry Sowizral, and Karel Zikan.
Efficient collision detection using bounding volume hiefgies of k-dopsIEEE Transac-
tions on Visualization and Computer Graphids21-36, 1996.

[34] Claude LacoursiereGhosts and machines : regularized variational methodsriterac-
tive simulations of multibodies with dry frictional contacPhD thesis, Umea University,
Computing Science, 2007.

[35] Hsien-Hsin Sean Lee. Multicore and GPU Programming fmteo Games. Geor-
gia Institute of Technology. Available asers.ece.gatech.edu/ ~ lanterma/mpg08/
mpglecture12f08.pdf , visited 2009-02-24.

[36] G.R. Liuand M. B. Liu.Smoothed Particle Hydrodynamics: A Mesh Free Methwvdrld
Scientific Publishing Co. Pte. Ltd., 2003.

[37] Gui-Rong Liu. Mesh Free Methods: Moving Beyond the Finite Element MethoRC,
first edition, July 2002.

[38] Aki Miettinen and Arne Pajunen. Concurrent and patatiemputing - general pur-
pose computing on graphics processors. Availableast.it.lut.filkurssit/08-09/
CT30A7001/Seminars/group0ldocument.pdf , visited 2009-03-10.

74 REFERENCES

[39] Matthias Muller, David Charypar, and Markus Grossrtieke-based fluid simulation for
interactive applications. IlRProceedings of ACM SIGGRAPH Symposium on Computer
Animation (SCA)pages 154-159, 2003. Availablehdip://www.matthiasmueller.
info/publications/sca03.pdf , Visited 2009-06-12.

[40] NVIDIA. Geforce 8800. Webpage. Available attp://www.nvidia.com/page/
geforce_8800.html , visited 2009-04-07.

[41] NVIDIA. Geforce gtx 285. Webpage. Available latp://www.nvidia.com/object/
product_geforce_gtx_285_us.html , visited 2009-04-07.

[42] NVIDIA. Tesla. Webpage. Available dtttp://www.nvidia.com/object/tesla_
computing_solutions.html , visited 2009-04-03.

[43] NVIDIA. What is CUDA. Webpage. Available dttp://www.nvidia.com/object/
cuda_what_is.html , visited 2009-01-28.

[44] John Owens.GPU Gems 2: Programming Techniques for High-PerformancapBics
and General-Purpose Computatiochapter 29 - Streaming Architectures and Technol-
ogy Trends. Addison-Wesley Professiona, 2005. Availablét@/http.developer.
nvidia.com/GPUGems2/gpugems2_chapter29.html , visited 2009-02-16.

[45] Per-Olof Persson and Sreenivasa R. Voleti. AppliedalkgdrComputing Solving Very
Large Finite Element Problems in Parallel. Technical repor2002. Available
at http://beowulf.lcs.mit.edu/18.337-2002/projects-200 2/persson/18.337/
fem/fem.html , visited 2009-08-13.

[46] Mahesh Prakash. Fluid solver: fluid simulation for motipicture special effects. Web-
page, 2009. Available dittp://www.csiro.gov.au/products/Fluid-solver.html ,
visited 2009-06-17.

[47] Chris Seitz. GPGPU: Is a Supercomputer Hiding in YouPR@bpage, 2005. Available at
http://Aww.informit.com/articles/article.aspx?p=398 882, visited 2009-02-24.

[48] Jonathan R Shewchuk. An introduction to the conjugaselignt method without the
agonizing pain. Technical report, Pittsburgh, PA, USA,4.98vailable atwww.cs.cmu.
edu/ ~ quake-papers/painless-conjugate-gradient.pdf , visited 2009-06-29.

[49] Rizwan A Siddiqui, Isil Celasun, and Ulug Bayazit. Getrbased compression of volumet-
ric and surface 3d point cloud data. \firtual Systems and Multimedid007. Available at
australia.vsmm.org/papers/siddiqui.pdf , visited 2009-06-18.

[50] Next Limit Technologies. Computational fluid dynamicd/ebpage, 2009. Available at
http:/fww.nextlimit.com/techno_cfd.php , Visited 2009-06-17.

[51] W.A. Wiggers, V. Bakker, A.B.J. Kokkeler, and G.J.M. Bmimplementing the conju-
gate gradient algorithm on multi-core systems. International Symposium on System-
On-Chip 2007. Available atprints.eemcs.utwente.nl/11441/01/Final_paper_
s0c2007.pdf , visited 2009-06-17.

[52] Adrew Witkin. Physically based modeing: Principlesigmmactice - constrained dynamics.
Robotics Institute, Carnegie Mellon University, 2007. Aable atwww.cs.cmu.edu/
~ baraff/sigcourse/notesf.pdf , Visited 2009-03-24.

