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Abstract

The processing power of graphics hardware has increased tremendously in the last several
years and they are therefore used more and more outside of their intended domain of graphics
rendering. This thesis describes the implementation and results of a fluid simulator, using the
constraint fluid method, which harnesses the processing power of modern GPUs, in particular
NVIDIA’s CUDA platform. As demonstrated in this thesis, particle systems with hundreds of
thousands of particles can be simulated and visualized at interactive rates and systems containing
up to a million particles can be run at a few frames per second.The biggest performance
bottleneck is currently in the solver, in particular the lack of a working preconditioned Conjugate
Gradient implementation.
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Chapter 1

Introduction

Certain types of fluid simulations require the solution to large systems of linear equations and
the close match between a GPU’s parallel architecture and the parallel nature of some types
of iterative solvers makes fluid simulations good candidates for significant speedups when the
simulation is written to exploit the processing power of modern GPUs. This Master’s Thesis
explores the possibility of implementing a novel method forfluid simulations, constraint fluids,
using NVIDIA’s CUDA platform, which enables developers to run non-graphics related code
on CUDA enabled hardware, such as any modern NVIDIA GPU. The constraint fluid method is
suitable for visual and interactive applications, and gives improved stability compared to stan-
dard fluid simulation techniques, such as SPH [21], allowingfor larger time steps and thus faster
simulations [6]. The target platform for the software developed during this project, CUDA, is
a hardware architecture developed by NVIDIA. It gives developers direct access to the compu-
tational units of CUDA capable devices, allowing for general-purpose computations on graph-
ics hardware. This is desirable since the raw floating point performance of graphics hardware
greatly exceeds that of a conventional processor.

The project is performed at Algoryx Simulations AB, a company specializing in physics
simulators for the professional market. Their physics toolkit is used for example in vehicle,
off-shore and medical educational simulators.

The report is divided into four parts. The first describes thepurpose and goals of the project
and gives a thorough problem description. The second part isa description of the platform
that is the target for the libraries and applications that are the final result of the project, i.e.
NVIDIA’s CUDA. The third part is a collection of chapters, from Chapter 4 to 6, that gives
the theory behind each of the topics that is required to implement the fluid simulator. The first
chapter in this collection describes the theory behind the constraint fluid method and the steps
that must be performed in order to get a working simulator. The other two chapters dive into the
details behind pieces of the constraint fluid method and describe several methods to solve the
subproblems. The final part of the report details the resultsof the project, the implementation
and its performance and finally the project is evaluated.

A number of symbols are used throughout the report. Matriceswill be denoted by capital
Latin letters, such asG, and diagonal matrices by upper case Greek letters, e.g.Σ. Vectors
are written as bold lower-case letters, for exampleg. The number of something, such as the
number of particles in a simulation, is denoted byn. Elements inside a vector is referenced by
subscripting the vector with an index. For example,vi is theith element of the vectorv. When
talking about a sequence of something, the sequence number is marked as(k). For example,
λ(k) is thekth λ created by an iterative solver.

1
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Chapter 2

Problem Description

This chapter describes the extent of the project and defines aset of goals that the project should
reach. The chapter also includes a short survey of related work in the fields of fluid simulations
and linear systems of equations solving.

2.1 Problem statement

The project should produce a fluid simulator, using the constraint fluid method, that uses a
CUDA capable device to offload the computationally intensive simulation from the CPU. Within
this problem lies collision detection between a large number of spheres and solving a sparse
linear system of equations.

A demonstrator for the fluid should also be implemented. The demonstrator should visualize
the fluid as it is being simulated inside a container and also be able to produce a dam break
scenario, i.e., a quick expansion of the container in one direction.

2.2 Goals

The primary goal of the project is to have a working demonstrator for the fluid that can simulate
hundreds of thousands of particles at interactive rates andeven larger systems at non-interactive
rates.

2.3 Purposes

Several applications can benefit from fast, high resolutionfluid simulations and include, for
example, engineering [50], visual effects for motion pictures [46], and interactive 3D games and
immersive educational software [20]. All interactive applications have strong requirements on
the performance of the simulation since a low frame rate severely degrades the user experience.

2.4 Methods

The development process involves several stages. A solid understanding of the CUDA platform
must be acquired in order to write efficient applications, and algorithms for performing all the
necessary steps of the simulation must be acquired or developed and finally implemented and

3



4 Chapter 2. Problem Description

tested. Each part of the simulation must also be verified to ensure that the application produces
correct simulations.

Knowledge about CUDA is obtained from documentation, presentation slides, educational
videos, and code examples provided by NVIDIA and others. Skills in CUDA are developed
by writing small applications that test concepts and techniques learned from the information
sources. The actual simulation is implemented in an incremental fashion where a CPU-based,
naive, spring-and-damper particle simulation is developed and then optimized using well estab-
lished methods and algorithms for efficient collision detection. The CPU application is written
with the CUDA platform in mind, using only algorithms and programming techniques that can
be transferred to CUDA. The application is then ported to CUDA, which is the first major de-
velopment effort using the target platform.

When a solid foundation for a particle simulation on CUDA is complete, the next phase
is to replace the spring-and-damper mechanics with the realsimulation of the Constraint Fluid
method. The switch substantially increases the amount of mathematics in the application which
makes it harder to debug since there are more layers of data processing between a detected col-
lision in a set of particles and the resulting effect on the system. A number of Matlab programs
are therefore constructed to validate the result from individual parts of the simulation.

2.5 Related work

There has been much work done in the field of fluid simulations,including efforts to utilize the
processing capabilities of graphics hardware for the simulations. Harada et al. have done several
projects [24] where fluids are simulated on a GPU [26, 25]. Hong et al. describe an extension to
the FLIP [8] method where an incompressible fluid is simulated using particles with adaptable
volume and mass [29]. Crane et al. describe a grid-based, as opposed to particle-based, fluid
simulation method that they implemented using DirectX shaders [12].

The topic of equation solving using GPUs is explored by Bolz et al., who developed a
conjugate gradient solver for sparse, unstructured matrices using shaders [7]. A more recent
paper [9] was published by Luc Buatois et al. in which they describe their GPU implementation
of the Jacobi-preconditioned Conjugate Gradient algorithm for sparse linear systems. The paper
discusses both NVIDIA’s CUDA API as well as the competing AMD/ATI CTM API. A more
general discussion is made by Wiggers et al. who explore optimization techniques and multi-
core solutions in order to speed up a Conjugate Gradient solver on both a dual-core processor
and the NVIDIA G80 GPU [51].



Chapter 3

General-Purpose Computation on
Graphics Processing Units

3.1 Introduction

The fast development of graphics hardware, or GPU for Graphics Processing Unit, in the last
several years has resulted in an increase of floating point computation power that exceeds that
of the CPU [14]. The main reason behind the steady progress isa pronounced focus on parallel
execution [38]. In graphics rendering, which has been the primary focus of graphics hardware
since their introduction, tasks such as transforming vertices and calculating lighting are natu-
rally parallel [47]. Because of this, adding more computational units, or cores, to the graphics
hardware significantly increases the peak performance. In contrast to CPUs, graphics hardware
dedicate a large portion of its transistors to computational units such as ALUs and FPUs [10],
while the CPUs spend more of the transistors on caches and control hardware that implement
for example branch prediction and out-of-order execution [44]. A graphical representation of
this can be seen in Figure 3.1. This difference makes the CPU and GPU suited for different
kinds of problems. In a simplified way, one can say that a CPU performs best when a few, small
pieces of data are processed in a complex, but sequential, way. This lets the CPU utilize the
many transistors used for caching, branch prediction and instruction level parallelism [44]. The
GPU, on the other hand, need massively data parallel problems to work efficiently [28].

The programming model most commonly used when programming aGPU is based on the
stream programming model [31]. In the stream programming model, input to and output from
a computation comes in the form of streams. A stream is a collection of homogeneous data
elements on which some operation, called a kernel, is to be performed, and the operation on
one element is independent of the other elements in the stream. Because of this, the graphics
hardware can assign one element from each input stream to individual cores and have them run
in parallel. When more cores are added, additional elementsfrom the stream can be processed
concurrently.

Another important difference between a general-purpose processor and a typical GPU is
the memory bandwidth. Because of simpler memory models and no requirements from legacy
operating systems and memory models, the GPU can support more than 100 GB/s of memory
bandwidth, while the bandwidth of general-purpose processors is around 20 GB/s [14]. Another
important aspect of memories, latency, is increasingly becoming the weakest link in a GPU. For
each year, the computational power is increased about 70% and memory bandwidth by 25%, but
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6 Chapter 3. General-Purpose Computation on Graphics Processing Units

Figure 3.1:Design differences between a general-purpose CPU and a GPU.

memory latencies are improved by only 5% [44]. Because of this, communication with memory
is becoming increasingly more expensive in terms of the number of arithmetic operations that
can be performed while waiting for the data to arrive.

Because of the properties outlined above, scientists and engineers have begun to use GPUs
for numerical calculations outside the field of graphics. Using GPUs for these types of appli-
cations is called General-Purpose computation on GraphicsProcessing Units, or GPGPU, and
began with the introduction of programmable shaders in 2001[35]. At first, programmers had to
use graphics-centric APIs such as DirectX or OpenGL [23]. Therefore, concepts from the CPU
realm had to be mapped to their GPU counterparts [27]. For example, arrays were stored as tex-
tures and inner loops represented as fragment shader programs. Later, in 2006, AMD announced
Close To Metal (CTM), a hardware interface designed for stream computing [2] and NVIDIA
announced CUDA, a general-purpose parallel computing architecture [43]. Both of these tech-
nologies provide programming models that let the programmer write programs without having
to think in terms of textures and shaders.

3.2 CUDA

CUDA, Compute Unified Device Architecture, is a general-purpose hardware interface designed
to let programmers use NVIDIA graphics hardware for purposes other than graphics in a more
familiar way. In general, the hardware need not be a graphicsrelated card at all, as there are
cards designed specifically for general-purpose calculations [42]. From here on, instead of using
the term GPU, any CUDA capable hardware will be referred to asa device. CUDA defines a
programming model and a memory model that is consistent between all CUDA devices. The
programming model describes how parallel code is written, launched and executed on a device
and how threads are grouped into blocks. The memory model defines the different types of
memories that are available to a CUDA program. The memory model is described further in
Section 3.2.1 and the programming model in Section 3.2.2.

To the programmer, CUDA is an extension to the C programming language that allows
the programmer to express parallel sections in the program for execution on the GPU. Such a
section is called a kernel. The CPU, or host, sets up the CUDA environment and optionally
copies input data to device memory and then launches the kernel. When the kernel has been
launched, the host is free to continue performing computations on its own, in parallel with the
device. When the host needs the result from the launched kernel, it initiates a memory copy
operation which waits for the running kernel to finish and then transfers the result from the
device to host memory.

Kernel code is written on the thread level with access to built-in variables that identify the
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executing thread. As described in the introduction above, graphics hardware, which is the foun-
dation of the CUDA architecture, has gained their high performance by dramatically increasing
the number of cores in each device. The first generation CUDA devices, the GeForce 8800
series released in 2006, contain 128 cores [40] and the GeForce 285, released in 2008 has 240
cores [41]. To achieve high performance, it is therefore necessary to have many threads running
each kernel. On current hardware several thousand threads may be required and this number is
likely to increase with each new hardware generation. Threads are organized in a hierarchy and
at the highest level of the hierarchy is the currently running kernel. The threads launched for
a kernel are divided into blocks of threads, and the collection of all blocks for a given launch
is called a grid. Threads within a block can synchronize and communicate via shared memory,
but blocks can not be synchronized and must be independent ofeach other. The size and layout
of the blocks are controlled by the program at kernel launch.The grid can be a one- or two-
dimensional array of blocks and the blocks themselves contain threads organized in up to three
dimensions.

The division of a kernel into thread blocks is what makes CUDAprograms scalable. By
forcing the blocks to be independent of each other, the CUDA runtime system can schedule
the blocks in whatever way is most suited for the current device. Figure 3.2 shows two possi-
ble schedulings of a set of blocks, where the device with morecores finishes the computation
faster. A CUDA application may get increased performance onnew hardware with more cores if
computational tasks are divided into enough blocks to utilize the available hardware resources.

Figure 3.2:Different devices result in different scheduling of threadblocks. More cores reduce
the time required to compute the whole grid, if the grid contains enough blocks to fill available
hardware resources.

There is another property, other than highly parallel algorithms, that is important for achiev-
ing high performance on CUDA devices and that is the arithmetic intensity. Adding more cores
to a chip adds computational power, but neither increases memory bandwidth nor reduces mem-
ory latency. To avoid idling cores, the ratio of arithmetic operations to memory operations
should be as high as possible. CUDA partially mitigates the latency problem by using a form of
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simultaneous multi-threading [18], i.e., by assigning several threads to each core and switching
between them when a thread becomes idle. This is described inmore detail below.

3.2.1 Hardware architecture

The right part of Figure 3.1 shows a simplified version of the internal layout of a CUDA device.
In this section, a more detailed picture of the hardware willbe given and the G80 family of
graphics cards will be used as an example. The G80 was released in November 2006 and
included in this family is for example the GeForce 8800 series of cards. Figure 3.3 shows a
block diagram of the G80 family of graphics cards.

Figure 3.3:Internals of an NVIDIA G80 GPU.

Figure 3.4:Magnification of one multiprocessor block.

The central part of Figure 3.3 illustrates the computational units, labeled SP for Scalar Pro-
cessor, but they can also be called thread processors. The thread processors are split into groups
of eight, creating several Streaming Multiprocessors (SM). Each block of threads is assigned to
a SM and several blocks can be assigned to the same SM, allowing for fast thread switching to
hide the memory latency.

Memory hierarchy

There are several types of memories in the CUDA memory hierarchy. The four types of physical
memories are registers, shared memory, device memory, and host memory. Figure 3.4 shows
the device memory and the Streaming Multiprocessor shared memory. Figure 3.5 shows all four
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memory types. The registers are part of each scalar processor and the host memory is the regular
system memory used by the CPU. It is not accessible by the CUDAthreads.

Figure 3.5: The different memories that are used in a CUDA system. Closest to the Scalar
Processors are the register files and the per-SM shared memory. At the other end of the hierarchy
is the device RAM and on the other side of the PCIe bus the host memory. Two types of caches
are located between the device memory and the SM’s, the constant cache and the texture cache.

The shared memory is very fast and designed with parallelization in mind. It is shared among
all scalar processors in a streaming multiprocessor and canbe used as a software-managed
cache for data that is required by several threads in a block.Performance is increased greatly
if threads in a block cooperatively read data from global memory to shared memory and then
do all memory accesses on shared memory until a result is produced and finally written back
to global memory by all threads in one chunk. Correctly implemented, this method makes use
of coalesced accesses to global memory, which is described below. To increase the bandwidth
of the shared memory, it is divided into banks. A bank is a hardware memory unit that service
memory accesses and a memory can service as many simultaneous accesses as it has banks,
which is 16 on the G80. In other words, 16 threads in an SM can read or write shared memory
simultaneously if the reads are organized in such a way that each thread reads from or writes to
distinct banks. Consecutive 32-bit words are assigned to consecutive banks. This has the effect
that threads can read data block-wise: the first thread readsthe first value, the second thread the
second value and so on and achieve best possible throughput.The result of improper accessing
patterns are bank conflicts. When two or more threads read different 32-bit words from the same
bank the requests are serialized and throughput decreased as many times as there are requests
to the bank. Several requests for data within the same 32-bitword does not result in any bank
conflicts. Instead the word is broadcast to all requesting threads.

The global memory can be used in four different ways. The firstis by dereferencing a pointer
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given to the kernel from the CPU. This will access the device memory directly without using
any caches, resulting in latencies of hundreds of cycles. The second way is to use a variable
stored in the constant memory. As the name implies, the constant memory is read-only by
CUDA threads and can therefore be cached to achieve efficientaccess. On the G80, the constant
memory is limited to 64KB. An alternative to the constant memory, and the third way to access
global memory, is texture lookups. In CUDA, textures work much like constant memory in that
it is read-only and cached. The difference is that textures can be much larger, are optimized for
2D locality and provides hardware filtering. Any part of the global memory address space can
be bound to a texture unit, allowing a kernel to read the output from a previous kernel through
that texture unit. The fourth use of global memory is for thread local arrays. Arrays created for
the CUDA threads are not stored in registers as are other local variables. Instead they are stored
in global memory which results in long access delays and possibly memory bus congestion.

The introduction to this chapter mentions the increasing gap between memory speeds and
computational power. This makes it important to use the device memory in the most efficient
manner possible. In CUDA, this is known as a coalesced memorytransaction. When accessing
data in global memory the best performance is achieved when all threads currently executing
on an SM access consecutive memory blocks of either 32, 64 or 128 bits that are aligned to
the same size. When this is the case, all memory operations are grouped together to a single
operation and the highest possible memory efficiency is achieved. The memory operations may
be serialized if they do not meet this criterion, resulting in reduced memory bandwidth.

Streaming Multiprocessors

The streaming multiprocessors, SM for short, provide the computational power of a CUDA
device. In the G80, each SM contains eight scalar processors, 8K 32-bit registers and 16KB of
shared memory. When a CUDA kernel is launched the thread blocks of the grid are distributed
over the SMs. The number of blocks that can be assigned to eachSM is determined by the
resource requirements for each block in the form of shared memory, register usage and the total
number of threads. On the G80 the maximum number of threads per SM is 768, the maximum
number of blocks per SM is eight and each block is limited to have at most 512 threads. Blocks
may be queued if there are more blocks than the hardware can handle and these blocks will be
launched when another block has finished. On the multiprocessor the thread blocks are split into
warps and each thread is assigned to a Scalar Processor. A warp consists of 32 threads and is
the smallest schedulable unit in a CUDA device. When issuingan instruction, the SM selects a
warp that is ready to execute and issues the next instructionto that warp. Most instructions take
four clock cycles to complete and the instruction pipeline for these instructions are four stages
long. Therefore, a complete warp can be completed every fourclock cycles. Each thread in
the warp has its own register state and instruction address.If the threads within a warp diverge
because of a data dependent conditional branch instruction, the hardware will execute all paths
in serial and disable all threads that are not on the currently executing path.

There is no cost associated with switching between warps since all active warps are stored
in the SM until that thread block has terminated. If one warp performs a long operation, such
as a read from global memory, the scheduler can issue the nextinstruction to another warp
immediately and in that way hide the memory latency as long asthere are enough waiting warps
to switch to.
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3.2.2 Programming model

The programming model in CUDA is based on the thread and memory hierarchies described in
Sections 3.2 and 3.2.1 and is exposed to the programmer as a small set of language extensions
to the C programming language. The design philosophy behinda CUDA application is to find a
serial sequence of segments in the application where each segment can be executed in a parallel
fashion, and then split each parallel section into segmentsthat can be solved cooperatively,
independent of each other. The first level of segments is whatis called a “kernel”. A kernel is
a function that is runn times byn different threads logically in parallel. The second level is the
grouping of thosen threads into thread blocks. The threads within the same thread block has
access to the same shared memory and can synchronize among each other and thus cooperatively
solve their piece of the problem. Each kernel can use the output from a preceding kernel as input
and in this way several kernels can be chained together in order to solve more complex problems.

CUDA devices are built around an architecture NVIDIA calls Single Instruction, Multiple
Thread (SIMT), a variant of the architectures in Flynn’s taxonomy [4]. It is Single Instruction
since each SM only issues one instruction at a time, and Multiple Thread since each thread
has its own instruction address and can execute any code path. The design is similar to vector
machines that are Single Instruction, Multiple Data (SIMD), the difference being that SIMD
machines expose the vector width to the software whereas SIMT code specify the execution and
branching behavior of a single thread. The programmer couldignore the SIMT architecture,
writing the code for each thread independent of all other threads and still get correct behavior,
but substantial performance improvements can be achieved by taking care to minimize path
divergences within thread warps.

A CUDA program typically follows a pattern similar to the following. A set of input data is
created on the host in some way, possibly generated or read from disk. This data is copied from
host memory to device memory and then a kernel is launched. The CPU is free to continue exe-
cution in parallel with the kernel if there is work available, or simply wait for the kernel to finish.
The CUDA threads uses their thread ID variable to find their piece of the data and optionally
copies it to shared memory for others to use. The threads thenperform some calculations and
finally writes the result back to device memory. When the firstkernel has terminated, the host
can launch a second. There is an implicit synchronization ifa kernel is launched while another
is still running. The threads of the second kernel each read apiece of the data written by the first
kernel, does some calculations and then writes the result back to device memory. This chain of
kernels can continue for as long as necessary. When the final result has been computed the CPU
can copy the result back to main memory and from there either continue performing operations
on the data or store it somewhere.

3.2.3 Graphics API integration

CUDA can inter-operate with the two major graphics APIs OpenGL and DirectX. Resources
such as vertex buffers and textures can be mapped into the CUDA address space and both
read from and written to by CUDA kernels. The API supports mapping OpenGL vertex- and
pixel buffer objects and from Direct3D can vertex- and indexbuffers, surfaces and textures be
mapped, with some restrictions. For example can the primaryrender target and stencil- and
depth buffers not be mapped.

3.2.4 Vector types

In addition to the primitive data types in C, CUDA supplies vector types of these containing up
to four components. They are named by the primitive type of a vector element followed by the
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number of components, for examplefloat4 and int2 . These data types can also be used in
standard C++ host code throughstruct definitions and overloaded operators defined in CUDA
header files.



Chapter 4

Constraint Fluids

Constraint fluids [6] is a method for simulating fluid flows. Itis a particle method, which means
that the simulated fluid is represented as a set of particles each carrying a small quantity of the
fluid. Each particle has a fixed size and carries a fixed mass. Ineach simulation step the method
tries to move these particles according to the external forces in a way that keeps the density of
the fluid as close as possible to a given target density.

4.1 Smoothed particle hydrodynamics

A number of properties, such as density, must be known in eachpoint of the fluid when per-
forming a simulation step. The constraint fluid uses a methodcalled SPH, Smoothed Particle
Hydrodynamics [21], when calculating these properties. The method was originally developed
for astrophysical problems, but its ability to trace material interfaces, free surfaces and moving
boundaries made it useful also in other areas such as material strength, metal forming, and fluid
simulations [37].

SPH distributes the fluid within a particle according to a smoothing function, orkernel. The
kernel is a functionW : R

2→ R that has its highest value when the first given argument is zero
and monotonically decreases as the first argument increasesuntil finally reaching zero when
the first argument is equal to or larger than the second argument, which is the radiush of the
particles. Figure 4.1 shows the distribution of fluid atoms inside a particle and an example kernel
function.

To compute the densityρ at any pointp in the fluid, the mass of each particle is multiplied
with the kernel function given the distance,d, from the selected point to the particle center as
argument. The results are summed and the sum is the fluid density at the selected point:

ρ(p) = ∑
i

miW(d,h) (4.1)

A number of kernel functions have been proposed. One that hasbeen used successfully in
fluid simulations is the following kernel, poly6, designed by Müller et al. [39]:

Wpoly6(d,h) =

{
315

64πh9 (h
2−d2)3 if 0 ≤ d≤ h,

0 otherwise.
(4.2)
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Figure 4.1:Left: distribution of fluid atoms inside a particle. Right: kernel function that de-
scribes the distribution of atoms.

Figure 4.2:Three overlapping particles. The density at any point in theoverlap is calculated as
the sum of each particle’s contribution.

4.2 Constrained dynamics

A constraint is a representation of what states are allowed or not in a simulation [52]. Examples
of constraints in more general physics simulators aredistance constraints, which say that two
objects should remain at a fixed distance from each other, andnon-penetration constraints,
which say that an object may not penetrate for example a plane, such as a floor or a wall. Each
constraint is represented by an indicator function that is zero when the system is in a legal state
and further from zero the more the constraint is violated. The gradient of the indicator function
describes in which direction a force must be applied to the violating object in order to restore
the constraint, i.e. move the object into an allowed state. The part of the domain of the indicator
function that the function maps to zero is called theconstraint surfaceand the gradient is always
normal to this surface.

In the beginning of each simulation step the state of the system is inspected and for each
constraint one element in the constraint violation vectorg is calculated, as well as the gradient
vector of the indicator function. The gradient is inserted into the Jacobian matrixG, which is
called a Jacobian matrix since it relates changes in the particles’ coordinates to changes in the
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constraint indicator function. From the matrixG, the constraint violationsg, and the current
state of the system a linear system of equations is formulated and solved, yielding a set of
Lagrange multipliers, denotedλ. The Jacobian matrixG, which holds directions, andλ, which
represents magnitudes, are then used to calculate the forces that the constraints induce on the
system. The simulation step is completed by applying the external forces and the constraint
forces to all objects in the simulation to find their new velocities and positions.

4.2.1 Density constraints

The goal of the constraint fluid method is to keep the density of the fluid as close as possible to
a target densityρ0 and an indicator function that achieves this is

gi = ρi−ρ0 (4.3)

whereρi is the density calculated for particlei using SPH as described above andρ0 is the target
density of the simulated fluid. An alternative, but equivalent, formulation is

gi =
ρi

ρ0
−1 (4.4)

which gives a smaller number for fluids with large target density. This is the formulation used
throughout the rest of this text.

4.2.2 Jacobian matrix

In addition to the constraint violation, each constraint has a vector that points in the direction in
which a force must be applied to restore the constraint. For single particle constraints, such as
the non-penetration constraint, the direction is usually simple to find. For the non-penetration
constraint it is simply the normal of the plane. For the density constraint, which is a multi-body
constraint, things are a bit more complicated. Each particle is influenced by all its neighbors
and each such interaction must be recorded. The result is a matrix, denotedG, in which each
row contains a set of direction vectors for one constraint and each block of columns is the
contribution to the constraints from a particular particle. That is, for each density constrainti,
row i of the matrixG has a non-zero vector in column blockj if the center point of particlei
lies within the influence radius of particlej. All interactions are symmetrical in the sense that
all particles have the same radius and thus if particlei influences particlej, then j influencesi
by the same amount, but in the opposite direction. The resultis that the Jacobian matrix will, if
disregarding the diagonal blocks, become skew-symmetric on the block level.

Figure 4.3 demonstrates the relationship between particlepositions and the resulting Jaco-
bian matrix. The matrix created from five particles is shown together with the particles’ posi-
tions relative to each other. The final matrix is shown block-wise with color gradients to indicate
influences between particles.

For n particles in a three-dimensional space the matrixG is ann× n block matrix where
each block is a row vector of length three. Each individual block is calculated as

Gi j =







−
mFi j r̂T

i j
ρ0

if i 6= j,

∑k
mFik r̂T

ik
ρ0

if i = j

(4.5)
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Figure 4.3: Five particles and the Jacobian matrix that is created from their positions. The
matrix is shown on the block level, where each block is colored according to the particles that
influenced the value of that block. White blocks indicate independent particles and contain the
zero vector.

wherem is the mass carried by each particle, andr̂ i j is the normalized vector pointing from
particlei to particle j. Also note that the diagonal blocks are the negated sum of allnon-diagonal
blocks on that row.

In the context of constrained dynamics, the restoring forcefor constraint violation is in the
direction of the gradient of the indicator function. A vanishing gradient for approaching particles
is undesirable since it corresponds to a zero restoring force. In the literature it is rather common
to use different kernel functions for different purposes, even within the same simulation. For
example, Müller et al. [39] applies three different kernelfunctions, some of which does not
satisfy all formal requirements on valid kernel functions [36]. The reason is that the custom
kernels results in improved stability. One such kernel, called thespiky kernel, brings stability
by not having a vanishing derivative when the distance between two particles goes to zero. A
vanishing derivative at small distances is hard to understand in a physics perspective, since it
means that the restoration force becomes small at short distances. In turn, this results in a
collapsing fluid once these short distances are reached. This motivates the changes to the kernel
gradient.

Following Müller’s example, a custom function for representing the kernel gradient is used
here, chosen because of its better stability compared to theformal definition of the kernel gra-
dient.

Fi j =
945

32πh8

(
h2−d2)2

(4.6)

In the general case, the matrixG is ac×dnmatrix wherec is the number of constraints active
in the simulation,d is the number of dimensions in the space where the particles reside andn
is the number of particles. In a simple constraint fluid simulation there is one density constraint
for each particle and thusn rows inG. If the fluid is to be put in some sort of container with a
non-penetration constraint for each particle, thenc could be as high as 2n. However, this does
not change the content and layout of then rows that control compressibility. In the finalG
matrix, each constraint occupies one row and has a non-zero block for each particle it affects,
and each particle occupies one block column and has non-zeroblocks for each constraint it is
affected by.

4.2.3 System of equations

To find the Lagrange multipliersλ, a system of equations must be solved. The system is cre-
ated from the constraint violationsg, the Jacobian matrixG, and the current state of the system,
including particle velocitiesv and external forcesf. In addition to this the equation includes
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some simulation configuration parameters. The first parameter,Σ, is a regularization term that
improves the condition number of the system matrix and adds anatural elasticity to the con-
straints. In the simulation this causes the fluid to be slightly compressible, which has relevance
to the physics being simulated since even water is actually slightly compressible [1]. The second
parameter,ϒ, controls how fast a violated constraint should be restored.

The equation to solve is the Schur complement form of the SPOOK [34] integration method:
(

1
m

GGT + Σ
)

λ = (ϒ− I)Gv−
4
∆t

ϒg−
1
m

G∆tf (4.7)

The matrix on the left hand side of Eq. (4.7) is called the Schur complement matrixSε. The
value ofΣ andϒ is controlled by two sets of scalar parametersτ andε with the definitions

ϒ = diag

(
1

1+4τ1
∆t

,
1

1+4τ2
∆t

, . . . ,
1

1+4τm
∆t

)

(4.8)

Σ =
4

∆t2diag

(
ε1

1+4τ1
∆t

,
ε2

1+4τ2
∆t

, . . . ,
εm

1+4τm
∆t

)

(4.9)

That is, bothϒ andΣ are diagonal matrices with one element for each constraint in the system
and for each constraint there is aτ andε that define theϒ andΣ matrices. The two sets of scalar
values are the parameters that can be tweaked in order to control the behavior of the simulation.
The parameterτ is the decay rate of constraint violations and can be set to a few multiples of the
time step. The other parameter,ε, is the compliance of the constraints, which for the constraint
fluids is the compressibility of the fluid.

Since the resultingΣ and ϒ matrices are diagonal, if the sameτ and ε is chosen for all
constraints this can be seen as a single scalar that is eitheradded or multiplied with either a
matrix diagonal or a vector.

4.3 State update

Solving Eq. (4.7) yields the vectorλ, which is used to update the state of the simulated system.
The update method used is leap frog, which is done in two steps. The first step applies all
forces, external and from the constraints, on the simulatedparticles and the second step uses
the new velocities to update the position of each particle. The positionsp, velocitiesv, and
external forcesf are vectors of lengthdn. Each block ofd consecutive elements in these vectors
describes the state of one particle.

The update formula for particle velocities is

v(k+1) = v(k) +
∆t
m

f +
1
m

GTλ (4.10)

Here, in the last term, the Lagrange multipliersλ are used to calculate the velocity change each
particle is subjected to by the constraints. The transpose of the Jacobian matrix,GT , is multiplied
with λ, which in essence means that each column, a record of which constraints affect one of the
particles and in which direction, is per-element multiplied with the constraint force magnitudes
which is stored in the Lagrange multipliers vector. The sum of these multiplications is the result
from one segment of theGTλ multiplication and is the constraint force to apply to one ofthe
particles in the system, scaled to compensate for the lengthof the time step. The force is divided
by particle mass to get acceleration.

The second term is the other forces that act on the particle system. Gravity is an example of
one such force. The force is divided by particle mass to get acceleration and then multiplied with
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the length of the time step to get this time step’s share of that acceleration. The two accelerations
are added to the velocity that the particle had at the beginning of the time step, giving the new
velocity of the particle.

When the new velocity has been found, the new position can be calculated using the follow-
ing recurrence:

p(k+1) = p(k) + ∆tv(k+1) (4.11)

The velocity of the particle is simply multiplied with the length of the time step to get the
movement during the current time step and the result is addedto the old position.
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Collision Detection

In physics simulations it is important to find all collisionsamong the simulated group of objects
in order to be able to simulate phenomenons such as bounces, stacks, and other types of contact-
related situations. A collision can occur in two different forms; intersection and contact. An
intersection is a state where a volume in space is occupied bytwo different objects. In other
words, two objects overlap, which is usually not desired in arigid body simulation. The other
variant, a contact, is the case where a single point or an areais occupied by two objects. The
real world counterpart to this is two objects touching each other, for example a box resting on a
table.

Collision detection is not limited to finding all objects that collide, but may also find the lo-
cation on each object where the collision occurred, the depth of the intersection and the collision
normal.

In general, each object can collide with any other object in the simulation which makes
collision detection anO(n2) problem. Also, since objects tend to move around a lot in simula-
tions the collision detection must be performed each simulation step in order to find the current
set of colliding objects. Because of these two properties, collision detection can become the
bottle-neck in a simulation when the number of simulated objects increase. A number of tech-
niques have been developed to speed up the collision detection compared to the naive approach
of testing all pairs of objects.

5.1 Methods for collision detection

Several general methods for collision detection are reviewed. The methods are divided into three
different types: bounding volumes, space partitioning, and sweep and prune. In the bounding
volume methods, each object is enclosed in one or more bounding volumes to simplify the
collision tests. The space partitioning methods divide thespace where the objects reside into
sections and the number of object pairs that need to be testedis reduced by only testing the
object pairs where both objects overlap the same section. Sweep and prune is a single algorithm
described last in this section.

5.1.1 Bounding volumes

Performing intersection tests between two complex geometries is an expensive operation. To
increase the performance of simulations with many objects with complex shapes a pre-test can
be performed before the more detailed intersection tests are done. By enclosing each object with
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a simple bounding volume some pairs of non-colliding objects can quickly be rejected by testing
for intersection between the bounding volumes. If the bounding volumes do not collide, neither
can the geometries. A collision between two bounding volumes means that the geometries may
collide and the exact collision test is performed.

A number of different shapes for the bounding volume can be used. The choice is a trade-off
between how well the shape fits the geometry, how expensive the intersection test is, computa-
tional cost to find the bounding volume, and the storage requirement. Two very simple shapes
are the sphere and the axis aligned bounding box (AABB). Bothof these are easy to create and
intersection tests are computationally cheap. A variant tothe AABB is the oriented bounding
box (OBB). This is a box that is rotated to achieve the best possible fit. These volumes are
demonstrated in 2D in Figure 5.1. Even better, with regard tofitness, is the discrete orientation
polytopes or k-dop [33]. A k-dop is a bounding volume enclosed by k planes, each with a given
orientation. The AABB is a special case of a k-dop with k=6 andthe normal of each enclosing
plane parallel to the axes of the coordinate system. The k-dop creation process can be seen as
placing k planes infinitely far away and moving them towards the object until all planes touch
it. A 2D example of this is given in Figure 5.2. Common k-dops in a three-dimensional space
are the 14-dop, which is an AABB with cut corners, 18-dop, a box with cut edges, and 26-dop
where both the edges and corners are cut.

Figure 5.1:Three bounding volumes demonstrated in two dimensions: a) sphere. b) axis aligned
bounding box. c) oriented bounding box.

To improve the fitness, a hierarchy of bounding volumes can becreated [30]. A bounding
volume hierarchy is a tree structure where the root node contains the bounding volume for the
entire object, and each subsequent level contains finer and finer approximations of the object.
Each internal node has a number of children that represent the finer bounding volumes, and the
union of these volumes entirely covers the part of the objectthat was covered by their parent.
This ensures that any pointp on the object is enclosed by all ancestors of the leaf node that
containsp. This allows the collision detection algorithm to perform coarse tests on the large
bounding volumes at the higher levels of the tree and prune all branches below a bounding
volume that failed the intersection test. While the union ofthe children is required to cover all
parts of the object that the parent covered, they are free to extend outside of the parent. However,
this coverage is redundant since it will be covered by the parent’s sibling and thus its children.
Any collision test where the collision happens in this area will fail the collision test with the
parent and instead descend into the sibling. On the other hand, if redundant coverage leads to
a tighter fit of the area covered by the parent, it may still be worthwhile. The leaf nodes of the
tree contains the primitives that build up the object and areused for exact collision tests when a
collision has been found with a node in the last layer of internal nodes.

Figure 5.4 shows how a bounding volume tree of spheres can be organized. For each level,
the bounding volumes for that level is drawn as a solid line and the bounding volume for the
parent, if any, is shown in dotted lines. Since all volumes are spheres, this is an example of a
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Figure 5.2:Demonstration of a 2D 5-dop. a) Five lines are moved towards the object. b) Each
line stops when it touches the object. c) The complete 5-dop.

Figure 5.3:Example k-dops in 3D. a) 14-dop. Box with cut corners. b) 18-dop. Box with cut
edges. d) 26-dop. Box where both corners and edges are cut.

sphere-tree. Other volumes are of course possible.
When a collision test between two bounding volume trees is tobe performed the root node

of each tree is tested against each other and if a collision isfound the smaller volume is tested
against the other node’s children. This continues until twoleaf nodes are found and collision
tests between the real geometries are performed, or when a collision test between two bounding
volumes report no intersection. The rest of that branch is then pruned and one of the siblings is
tested next.

5.1.2 Space partitioning

Instead of testing each object against every other object, with or without the use of bounding
volumes, one can use space partitioning. By splitting the world space into sections and mapping
each object to the sections it overlaps, the collision detection algorithm only needs to perform
collision tests between objects that share at least one section of the world space. Another way
to look at it is to say that collision detection need only be performed for objects in sections
to which more than one object has been mapped, and then only between objects that has been
mapped to that section.
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Figure 5.4:Bounding volume hierarchy of spheres. a) Bounding volume stored in the root node.
b) First level of children. Parent volume indicated by dotted lines. c) Final level of internal
nodes. It is clear that the union of the closed circles is a better approximation of the object than
the full bounding volume depicted in a).

Uniform grid

A very important property of a partitioning scheme is the shape and size of the sections that the
world is split into. A simple way is to use AABBs in a uniform cell grid [22]. The following
expression finds the index,c, of the cell where pointp = [x,y,z] resides:

cx =

⌊
px−x0

Sx

⌋

,cy =

⌊
py−y0

Sy

⌋

,cz =

⌊
pz−z0

Sz

⌋

, (5.1)

where[x0,y0,z0] is the coordinate of the base vertex of the first AABB and[Sx,Sy,Sz] is the size
of each AABB.

The size of a cell is very important and should be based on the sizes of the simulated objects.
The uniform grid works best when the objects are roughly the same size and evenly distributed
over the world space. It can be hard to find a good cell size if there are both very large and very
small objects. With small cells the large objects will be stored several times and thus increase
the memory usage, but larger cells will cause some cells to hold a large number of small particles
which will result in an increase in the number of collision tests that must be performed.

Figure 5.5:Varying object sizes makes finding a good cell size hard.
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The storage of each cell is another important aspect. A three-dimensional array of cells is
a simple approach, but may cost too much in terms of memory consumption if there are many
empty cells. A technique to reduce the amount of required memory is to use spatial hashing.
Instead of using the calculated cell index as an index into a large array, a hash key is calculated
and used to store the object in a hash map. The hash map is a listof buckets where each bucket is
associated with a hash key. The hash key for each cell than an object overlaps is calculated and
the object is recorded in each associated bucket. Cells thatcontain no objects use no memory
since the objects are stored directly. The next step, after the hash map has been filled, is to
traversed the hash map and all objects that have been recorded in the same bucket are tested
against each other. An example is shown in Figure 5.6.

The hash key for a cell can, for example, be calculated using the following expression:

k = (cx · px +cy · py +cz · pz) modn (5.2)

wherepx, py, andpz are large prime numbers. Other hash functions are also possible.
The size of the hash map,n, is of vital importance for the performance of the collision

detection algorithm. If too small, then many cells will be stored in the same bucket, but a too
large size reduces performance because of increased memoryusage.

Figure 5.6 shows a situation where five objects are located ina two dimensional cell grid
where each cell has been given a hash key between zero and nine. The resulting hash list is
shown on the right of the image.

Figure 5.6:Example scenario in two dimensions and the hash list createdby the spatial hashing
method. a) Grid layout with objects. The number written in each cell is the hash key for that
cell and the cell indices for the first column of cells are shown in smaller font and increases
successively to the right (not shown). b) Resulting hash list where the storage location of each
object is shown. Collision checks are required for cells given hash keys 4, 7 and 8.

An alternative to explicitly storing the cells is possible when the difference in the sizes of the
objects are small. Each object is given ahome cellbased on the center point of the object and
by making the cells larger than the largest object, two objects can not collide unless they have
the same or neighboring home cells. Collision detection is done by calculating the home cell of
each object and then sorting the list of objects based on the home cell. After sorting, all objects
that have the same home cell are stored consecutively in memory and the start and end of each
non-empty cell can be found. The only thing that remains is toiterate over the non-empty cells
and test all particles in each cell against the other particles in that cell and the particles in the
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neighboring cells.
Figure 5.7 shows an example where this method is used. When checking for collisions,

the algorithm picks an entry from the list of home cells and tests the found objects against the
other objects with the same or neighboring home cell. For example, when inspecting home cell
with index 2, the neighboring cells have index 1, 3, 5, 6 and 7.Of these, only the cell with
index 3 has an entry in the home cell list, and thus only that cell needs to be tested against the
current cell. The union of objects contained in these two cells are objectsb andc, which are
tested against each other. To avoid duplicate collisions, each home cell need only test its objects
against neighboring cells with higher cell index. Any collision with an object with a home cell
with lower index will already have been found when that lowerindexed cell was processed. In
the example in Figure 5.7, the home cell with index 9 does not need to perform any collisions
checks since all non-empty neighboring home cells have a lower cell index.

Figure 5.7:Collision detection using home cells and particle sorting.a) Grid layout with ob-
jects. Numbers show cell index and lower-case letters are names on objects. b) Data structures
used for collision detection.

Recursive space partitioning

A considerable speedup can result if a recursive space partitioning scheme is used when the
simulation contains objects of various sizes. The idea is tocreate the space partitioning based
on the shapes and positions of the simulated objects. There are several ways to choose how to
perform the splitting and three such ways will be described here. One technique for splitting
the space is an octree [49]. An octree is made up of several levels of cubes organized in a tree
hierarchy. At the first level, a single node represent the whole simulated space. This node, just
as all other non-leaf nodes, has eight children. The children represent the eight subspaces that
are created by splitting the space represented by the parentnode into eight pieces. The split
is always made in three slices, each parallel to one of the coordinate axes, meeting at a single
point. This ensures that each piece is a rectangular hexahedron, i.e. a cuboid. For each piece, the
process may then be repeated recursively until some stop condition is satisfied, for example that
each segment contains a single object. Figure 5.8 shows an example where a two-level octree
has been created with the highest division level in one of thetop corners.

A similar technique is the kd-tree presented by Bentley [5].The kd-tree also splits the
simulated space into cuboids but splits each node once, making the kd-tree a binary tree. The
creation process is similar to the one for octrees, but instead of splitting along every dimension
in each step, only one dimension is selected. The choice is arbitrary, where Bentley suggest that
the split dimension is chosen in cyclic fashion, starting with dimension 0, then 1 and so on up to
dimension k-1, after which dimension 0 is used again. Another suggestion is made by Dikaiakos
and Stadel [16], who chose to split each cuboid along its longest dimension.
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Figure 5.8:Cubic space subdivided using an octree. a) Original space. b) First division cuts
the space in eight pieces. c) The granularity of one of the topcorners is increased by dividing
that section once more. d) The tree structure created from this set of divisions.

5.1.3 Sweep and prune

This method [11] is also called sort and sweep [22] and buildsupon the observation that for two
objects to collide, their extent in all dimensions of the simulated space must overlap. If one can
find one dimension where the extents of the objects do not overlap, no collision is possible. The
algorithm can be explained as follows. Select one dimensionof the simulated space, find the
beginning and end point along that dimension for each objectand insert begin and end markers
into a list, eventually containing 2n entries wheren is the number of simulated objects. The list
is sorted in ascending order based on the coordinate stored in the marker and collision detection
is performed while traversing the list. Each time a begin marker is found, insert the associated
object into a list of active objects and remove the object when its end marker is found. Collision

Figure 5.9:Example of a kd-tree. a) The cubic space is first split along the red plane, creating
one large and one thin subsection. The larger subsection is then split by the green plane and the
smaller by the blue. b) The tree structure created by this splitting. Each node represents a piece
of the simulated space and edges are colored by the edge that split the parent node.
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tests are performed when a new object is inserted into the active list, and then only against the
other objects in that list. The choice of which dimension to use is arbitrary, but knowledge about
the simulated system can give clues. The best dimension is the one with the smallest amount of
overlap of objects projected on that dimension.

Figure 5.10:Sweep and prune in action. The first phase of the algorithm hasbeen completed
and thus the sorted list of begin- and end markers is available. The figure shows the algorithm in
process of traversing the list. Any collision between objectsa andb have already been rejected
and now the start marker for objectc is encountered when the list of active objects only contains
b. The next thing that will happen is thatc will be inserted into the active list and tested against
b, and a collision will be found.



Chapter 6

Methods for Solving Systems of
Linear Equations

Many types of numerical methods involve solving a linear system of equations and several meth-
ods exist for solving them. A system of linear equations is a set of linear equations that share a
set of unknowns and a solution that simultaneously satisfiesall the equations. For example, if
x = [x1,x2]

T is a vector of unknowns, then

5x1 +4x2 = 4

3x1 +7x2 = 8

is an example of a system of linear equations. In matrix form,the system is written as

Ax = b (6.1)

whereA is called thesystem matrix.
The methods used to findx can be divided into two major groups: direct solvers and iterative

solvers. Direct solvers perform a finite number of operations on the system and at the end, in
the absence of round-off errors, produces the desired result, while iterative solvers start with
an initial guessx(0) and iteratively creates a sequence{x(1),x(2), . . . ,x(n)} of (hopefully) ever
better approximations [15]. Many iterative methods can be expressed as an iterator function that
is applied to the most recentx(k).

x(k+1) = f (x(k)) (6.2)

The formulation off is what distinguishes one iterative method from another. Iterative solvers
come in two types, stationary and non-stationary. A stationary method is one where the iterator
function can be written asx(k+1) = c+ Tx(k) wherec and T remain unchanged throughout
the iterations. When there is no suchT andc, the method is a non-stationary one [19]. Any
stationary iterative method only converges if the largest eigenvalue of the iteration matrixT, the
spectral radius, is less than one [15].

One drawback of direct methods is their high memory footprint and potentially long execu-
tion time, which grows cubically with problem size unless there is much sparsity [32]. If the
demand for accuracy in the solution is low, then an iterativemethod may find a “good enough”
solution after a limited number of iterations faster than the time a direct method would require
to find a more accurate solution [19]. Another characteristic of direct solvers is the fill-in effect.

27
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The operations that the algorithm performs may write a non-zero value to a location previously
occupied by a zero [3]. For matrices stored in a sparse format, this may be a costly operation and
increases the amount of required memory. In addition, direct methods, unlike iterative methods,
do not map well to the streaming architecture of GPUs.

Iterative methods also have disadvantages. In particular,convergence may be very slow
for some problems and the sequence{x(n)},n = 1, . . ., may even diverge for some very ill-
conditioned problems [3], making it impossible to find the desired result. Two very important
properties to consider when choosing an iterative solver isthe rate of convergence and for which
problems the solver is guaranteed to converge. The advantage of iterative solvers is that they
consist mostly of matrix-vector operations and do not change the system matrixA. This lets the
implementation take full advantage of the sparsity of the matrix.

Because high precision is most often not required in physicssimulations [19], high perfor-
mance is the primary focus of this project, and because the matrices used in this project are very
sparse and difficult to modify on the highly parallel CUDA platform, only iterative methods will
be described here.

6.1 The Jacobi method

The Jacobi method is a simple iterative method where each equation is considered indepen-
dently [3]. In each iteration, equationi is used to update the approximation ofxi using the
current approximation for all other unknowns. The update isdone by solving forxi using stan-
dard algebraic manipulations.

x(k+1)
i =

1
aii

(

bi−∑
j 6=i

ai j x
(k)
j

)

(6.3)

The operation gathers all terms except for the one containing xi on the right hand side and then
divides both sides by the coefficient of the left hand side. The same operation can be expressed
using matrix notation and a matrix splitting. The system matrix A is split into two parts

A = Φ+R (6.4)

whereΦ contains the diagonal elements ofA andR contains the rest of the elements, i.e., off-
diagonal elements. All other elements are zero. Eq. (6.1) can now be written as

(Φ+R)x = b (6.5)

which we rewrite to get an expression closer to the form of Eq.(6.2).

Φx+Rx = b (6.6)

Φx = b−Rx (6.7)

x = Φ−1(b−Rx) (6.8)

SinceΦ is a diagonal matrix, it is easy to invert and is reduced to the1
aii

seen in Eq. (6.3).
Similarly, since the matrixR contains the elements ofA except for the diagonal elementsaii ,
b−Rx is equivalent to the parenthesized expression in Eq. (6.3).

When iterating, Eq. (6.8) is evaluated again and again, and for each iteration, the approxi-
mation of the solutionx calculated in the previous iteration is used in the right hand side. Using
the notation for iteration indexing, the update equation iswritten as
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x(k+1) = Φ−1(b−Rx(k)) (6.9)

This equation is in the form of Eq. (6.2).

6.2 The Gauss-Seidel method

By making only a slight variation to the Jacobi algorithm onecan derive the Gauss-Seidel itera-
tive method. The fundamental difference between Gauss-Seidel and Jacobi is that Gauss-Seidel
does not perform the updates to the unknown vectorx independently for each element. When
the first element inx has been updated, all subsequent updates use the new value intheir cal-
culations. This has the effect that the ordering of updates,which was irrelevant when using
Jacobi, now becomes important [15]. If an arbitrarily selected equationi is updated first, then
it will use only old elements fromx in the update, while if the same equation is updated last, it
will necessarily only use the newer values ofx. This will produce two different, but both valid,
updates toxi . Any equation updated anywhere else in the ordering may use amix of old and
new elements.

The update rule from the Jacobi method is changed to take advantage of the new values of
the vectorx:

x(k+1)
i =

1
aii

(

bi−
i−1

∑
j=0

ai j x
(k+1)
j −

n−1

∑
j=i+1

ai j x
(k)
j

)

(6.10)

The equivalent matrix representation of Eq. (6.10) requires that we split the system matrixA
slightly differently than done for the Jacobi method.A is now rewritten as

A = Φ+L+U (6.11)

where, again,Φ contains the diagonal part ofA. The other elements, however, are split in an
upper triangular partU and a lower triangular partL. When the equations are processed top-
to-bottom and currently working on equationi, row i of U contains all the non-zero elements
that should be multiplied with the old elements ofx andL contains the non-zero elements that
should be multiplied with the newly updated elements ofx.

The Gauss-Seidel method is derived in matrix notation as follows:

(Φ+L+U)x = b (6.12)

Φx+Lx+Ux = b (6.13)

Φx = b−Lx−Ux (6.14)

x = Φ−1(b−Lx−Ux) (6.15)

The differentiation between different steps in the successive approximation refinement is done
as follows.

x(k+1) = Φ−1(b−Lx(k+1)−Ux(k)) (6.16)

Gauss-Seidel is sequential in nature since each update to anelementxi requires that the
previous elements that equationi depends on have been updated already [19]. This makes it
hard to parallelize since sets of equations that are internally independent with respect to a set of
unknowns must be found and the amount of concurrency available is limited to the number of
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equations per set. The independent sets are easily visualized, as in Figure 6.1, by reordering the
equations and unknowns in such a way that the equations within a set are numbered consecu-
tively, and similar for the unknowns. The result is that the new system matrix will have a clear
block structure, where the square diagonal blocks are diagonal matrices. All unknowns of one
such diagonal block can be updated in parallel, since they are all independent of each other. The
blocks, however, must be processed serially [45].

Figure 6.1:System matrix for two sets of independent equations, colored in red and green. They
are independent because each unknown within each diagonal block only appear in a single
equation within that block.

6.3 The conjugate gradients method

The conjugate gradient method [48, 19], or CG for short, is different from the Jacobi and Gauss-
Seidel methods in that it is not based on a recurrent multiplication between an iteration matrix
created from the system matrix and the current approximation. Instead, CG should be viewed
as a minimization method that tries to find the minimum on a hyper-surface defined by the
following scalar function, called aquadratic form:

f (xa) =
1
2

xT
a Axa−bTxa +c (6.17)

wherec is any scalar constant andxa is any approximation ofx. Figure 6.2 shows a graph of
Eq. (6.17) for a 2×2 matrix.
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Figure 6.2:Graph of the quadratic form for a2×2 system matrix.

For any positive-definite matrixA, the shape of the quadratic form is a paraboloid bowl and
thus has a well defined global minimum. The gradient of Eq. (6.17) is

f ′(xa) =
1
2

ATxa +
1
2

Axa−b (6.18)
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which, for symmetric matrices, reduces to

f ′(xa) = Axa−b (6.19)

The gradient is a vector field where each vector points in the direction of greatest increase.
By setting f ′(xa) to 0, we arrive at the original system that we are trying to solve.This means
that the bottom of the parabolic bowl will, for any symmetricpositive-definite matrix, coincide
with solution ofAx = b. For non-symmetric matrices, the simplification from Eq. (6.18) to
Eq. (6.19) is invalid and thus the local minimum may lie elsewhere than on the solution to
the original system. CG will then instead find the solution tothe system1

2(AT + A)x = b. For
matrices that are not positive-definite, the shape of the hyper-surface is not a bowl and it will be
impossible to find a global minimum, causing CG to fail. Figure 6.3 shows what the quadratic
form looks like for an indefinite matrix.
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Figure 6.3:Quadratic form for an indefinite matrix.

6.3.1 Search directions

Arguably, the most obvious direction to move an approximationx(k) is in the direction of steep-
est descent. That is, to movex(k) in the direction of the negative gradient. The iteration function
for this method, calledgradient descent, or juststeepest descent, is

x(k+1) = x(k)−α f ′(x(k)) (6.20)

which, by using Eq. (6.19), can be formulated as

x(k+1) = x(k) + α(b−Ax(k)) (6.21)

The step lengthα is chosen such that the gradient of the new approximation,f ′(x(k+1)), is
orthogonal to that of the old approximation,f ′(x(k)). This ensures thatx(k+1) lies on the lowest
possible location along the line defined by the steepest descent of positionx(k).

Steepest descent has the disadvantage that it tends to repeat steps in similar directions. This
can be clearly seen in Figure 6.5 where a large number of stepsis required since each new
solution is thrown back and forth between the two sides of thelong valley, only slowly moving
towards the minimum point.

A much better strategy would be to choose search directions that do not repeat a previously
used one and makes sure that the step taken in each direction makes any more movements in that
direction unnecessary. By using orthogonal directions,{d(0),d(1), . . . ,d(n−1)}, there can be no
repetition of any direction and the correct answer is found in n steps, wheren is the number of
unknowns. For each step taken, the length of the step should be chosen so that the error vector
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Figure 6.4:The search line and the gradient at several points along the line. The minimum
along the line is found when the gradient is orthogonal to thesearch line.

Figure 6.5:Convergence is slow when similar directions are used several times.

of the new approximation is orthogonal to the search direction, i.e.eTd(k) = 0. This will bring
the new approximation as close as possible, along the searchdirection, to the exact solution.
Unfortunately, since knowing the error would be the same as knowing the exact answer, this
method can not be used directly.

Instead of requiring orthogonality between the search directions, a practical formulation is
obtained by requiringA-orhogonality. Two search directionsd(k)andd(l) areA-orthogonal if

(d(k))TAd(l) = 0 (6.22)

This in turn changes the requirements on the step length, which should be such that the new
error isA-orthogonal to the search direction:

(d(k))TAe(k+1) = 0 (6.23)

This can be used to find the step lengthα(k):

(d(k))TAe(k+1) = 0 (6.24)

(d(k))TA(e(k) + α(k)d(k)) = 0 (6.25)

α(k) =−
(d(k))TAe(k)

(d(k))TAd(k)
(6.26)

α(k) =
(d(k))T r (k)

(d(k))TAd(k)
(6.27)

(6.28)

The search directions are built from the residuals at each iteration, where the initial search
direction is the residual of the initial guessx(0). For each iteration, the search direction to use
in the next iteration is a linear combination of the residualand the current search direction
according to the following:
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d(k+1) = r (k+1) + β(k+1)d(k) (6.29)

where

β(k+1) =
(r (k+1))T r (k+1)

(r (k))T r (k)
(6.30)

and

r (0) = b−Ax(0) (6.31)

r (k+1) = r (k)−α(k)Ad(k) (6.32)

6.3.2 Algorithm

The complete CG algorithm is given in Algorithm 6.3.1.

Algorithm 6.3.1 The Conjugate Gradient algorithm

GivenA,b,x(0)

r (0) = b−Ax(0)

d(0) = r (0)

k = 0
repeat

α(k) = (r (k))T r (k)/(d(k))TAd(k)

x(k+1) = x(k) + α(k)d(k)

r (k+1) = r (k)−α(k)Ad(k)

β(k+1) = (r (k+1))T r (k+1)/(r (k))T r (k)

d(k+1) = r (k+1) + β(k+1)d(k)

k = k+1
until ||r (k+1)|| is small enough

Unlike Jacobi and Gauss-Seidel, CG is not asmoothingmethod, meaning that some compo-
nents of the error term might increase after an early iteration. This manifests itself as jitter in a
plot of the error and because of this, CG may return very inaccurate results if too few iterations
are performed.

6.3.3 Preconditioning

Preconditioning is a technique to increase the rate of convergence of CG. Instead of solving
Ax = b directly, one can solveM−1Ax = M−1b whereM−1A has a lower condition number than
A andM is called the preconditioner. There are many ways to createM, but a simple method is
to us a diagonal matrix whose elements are the same as the diagonal elements ofA.

The algorithm is only slightly changed to make use of the prconditioner, inserting it at ap-
propriate places. It is listed in Algorithm 6.3.2.
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Algorithm 6.3.2 The preconditioned Conjugate Gradient algorithm

GivenA,b,x(0)

r (0) = b−Ax(0)

d(0) = M−1r (0)

k = 0
repeat

α(k) = (r (k))TM−1r (k)/(d(k))TAd(k)

x(k+1) = x(k) + α(k)d(k)

r (k+1) = r (k)−α(k)Ad(k)

β(k+1) = (r (k+1))TM−1r (k+1)/(r (k))TM−1r (k)

d(k+1) = M−1r (k+1) + β(k+1)d(k)

k = k+1
until ||r (k+1)|| is small enough

6.4 Convergence

The Jacobi and Gauss-Seidel methods are similar and have similar convergence criteria. For
both methods, strict row diagonal dominance is sufficient for convergence [15]. That is, for
every system matrixA where

|aii |> ∑
j 6=i

|ai j | (6.33)

is true for everyi, i.e., every row, Jacobi and Gauss-Seidel both converge. Inaddition, Gauss-
Seidel is guaranteed to converge to the solution even for systems that lack strict row dominance
if the system matrix is positive-definite. However, this is not necessarily true for Jacobi and
because of this, some problems that Gauss-Seidel can solve causes Jacobi to diverge.

An example of one such matrix is

A =





3 2 2
2 3 2
2 2 3



 (6.34)

which is both symmetric and positive-definite but not strictly row diagonally dominant. The
Jacobi iteration matrix forA is

T =





0 −2/3 −2/3
−2/3 0 −2/3
−2/3 −2/3 0



 (6.35)

To determine if a recurrent application ofT to a vector will converge or diverge, the eigenvalues
of T must be inspected. If the aboslute value of any eigenvalue isgreater than one, then Jacobi
fails. The eigenvalues are found by finding the roots of the characteristic polynomial

det(λI −T) = λ3−
4
3

λ+16/27 (6.36)

which are 2/3 and -4/3. The spectral radius ofT is therefore 4/3, which is larger than one and
causes Jacobi to diverge.

For CG, a symmetric positive-definite system matrixA is both required and sufficient for
convergence [48].
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Implementation

In this chapter the implementation of the four main parts of the system is described. The first
section describes the bulk of the fluid simulation, which includes data structures, the ordering
of events, state updates, and how to include a fluid simulation into an application. The second
section concerns the collision detection part and include motivations for why a particular method
was chosen and an in-depth description of how it works. The next section describes the solver
and the final section the demonstrator, including fluid setup, user interactions, and rendering.

7.1 Constraint fluid

The constraint fluid library consists of a stack of classes and functions as shown in Figure 7.1,
and at the highest level is theConstraintFluid class. A fluid simulator is created by creating a
new instance of this class and it is the interface that the application uses to communicate with the
fluid simulator. The second layer of the stack is the helper classes that the top level class uses to
perform the different parts of the fluid simulator. Two of these helpers, theCollisionDetector
and the different types of solvers, are described in coming sections and the last will be given a
shorter description in this section. It is the helper objects that launches the CUDA kernels, which
constitutes the last two layers of the stack. The helper objects call kernel wrappers which per-
form texture bindings, validity checks, grid block setups,and finally launches an actual CUDA
kernel, which is the last layer of the stack.

Figure 7.1:The different parts of the library.

7.1.1 Application integration

This section contains a brief description of what is required to insert a fluid simulation into an
application. The text is not to be considered exhaustive andan example application is supplied
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together with the rest of the source code.
All the definitions an application needs in order to use the constraint fluid is supplied in

the header fileconstraintFluid.h . In this file, two definitions are of utmost importance to
the user. One is the definition of theConstraintFluid class itself, but equally important is a
structure namedConstraintFluidParameters . This structure is used to control the behavior
of the fluid and is passed to theConstraintFluid constructor. It includes parameters such as
the number of particles to be simulated, the size of the container, all parameters used in Eq.
(4.7) and the strength of the gravity force. When the structure has been filled, the application
can continue to create theConstraintFluid object. In addition to the parameters structure, a
solver must be specified. TheConstraintFluid class contains a publicenum that defines the
supported solvers and one of these should be passed as the second argument to the constructor.

When a fluid simulator has been created, only two method callsare required to finish the in-
tegration with the application. The first isstepSimulation , which does a complete simulation
step, and the second isgetParticlePositionsVBO , which returns the identifier of the OpenGL
vertex buffer where the current particle positions are stored. It is up to the application to render
the particles in an appropriate manner. There is currently no support for DirectX integration, but
the development effort required is limited to implementinga subclass ofDenseBlockVector
that uses a DirectX vertex buffer for storage and replace theuse ofDenseBlockOpenGLVector
with the new vector type.

The simulator supplies a number of additional methods that can be used to inspect the state
of the simulated fluid, for example the density violations ofeach particle, the distribution of
the number of neighbors among the particles and the number ofsimulation steps performed. In
addition, some of the aspects of the simulation can be changed during runtime. This is currently
limited to the gravity vector and the size and position of thecontainer.

7.1.2 Data structures

Two types of data structures are fundamental to the implementation of the fluid simulator: a
vector and a sparse matrix. Vectors are used for storage of, for example, particle positions
and velocities, constraint violations, and the calculatedLagrange multipliers. It is important to
differentiate between vectors as the CUDA data type and the different vector classes, which may
be a vector of for examplefloat4 s. The sparse matrix is used only to represent the Jacobian
matrix.

Vectors

Vectors are the main data holders of the fluid simulation library. All data related to a single
particle or a single constraint are stored in a vector. Vectors can be of two types, element vec-
tors and block vectors, and be stored in two different ways: in memory allocated by CUDA
allocations or as OpenGL vertex buffers. There is currentlyno support for Direct3D integra-
tion. OpenGL buffers are used for particle positions and colors since this allows an application
that uses the library to render particles efficiently through the OpenGL callsglVertexPointer ,
glColorPointer andglDrawArrays . Abstractions has been made though object oriented de-
sign and inheritance to allow any non-OpenGL code to use these vectors without knowing where
the actual data is stored.

The difference between an element vector and a block vector is that the element vector is a
vector offloat s and the block vector is a vector offloat4 s. The use of block vectors makes
it easier to find for example the position of a given particle and memory read and writes are
easy to coalesce since coalescing is achieved when each thread of a warp reads from or writes
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to the index dictated by its thread ID. If simplefloat arrays were used, the threads of a thread
block would have to cooperatively read all required data to shared memory, synchronize and
then distribute the data from shared memory to each of the threads. Since shared memory is a
limited resource, this approach may limit the number of blocks that can reside on an SM and
thus hamper the hardware’s ability to hide memory latency.

The vector class contains methods to fill the device memory area with data from host mem-
ory, read the content of a vector from device memory to host memory, and print the content of
a vector to screen or disk. It can also supply a raw pointer in CUDA address space that can
be used in CUDA kernels to read from and write to the memory allocated for a vector. The
OpenGL vectors can also supply theGLuint that identifies the buffer object and is a required
argument to OpenGL calls that use the buffer.

Sparse matrix

The sparse matrix class developed for this project is tailored to the requirements of the fluid sim-
ulation, designed specifically to hold the Jacobian matrixG for the particular set of constraints
used in this fluid simulation and optimized for matrix vectorand transposed matrix vector mul-
tiplication, which are the two most important matrix operations used.

The layout of the matrix we wish to represent is as follows. The matrix contains one row for
each constraint in the simulation and each row contains one block of elements for each particle,
as described in Chapter 4 where the constraint fluid algorithm is presented. The particles in the
simulation can produce two constraints each, one density constraint and one non-penetration
constraint, and the matrix can therefore contain up to 2n rows. The density constraints are
multi-body constraints and the rows created by them may therefore contain several non-zero
blocks, but the rows created by non-penetration constraints only contain one non-zero block.
The ordering of the rows is arbitrary in general, but the implementation always places the density
constraints at the top and the non-penetration constraintsin the bottom rows. Figure 7.2a shows
the layout of non-zero blocks.

The implementation makes some assumptions about and imposesome limitations on the
data stored in the matrix. First, the density constraint part of the matrix must be skew symmet-
ric, and second, that no row in the density constraint part contains more than a preconfigured
maximum number of non-zero blocks. The assumption on skew-symmetry is no limitation in
the simulation since it holds true by the definition of Eq. (4.5), which defines the matrix, but
the limitation on blocks per row in density constraints can be a problem. In essence it means
that each particle can have only a limited number of neighbors and any neighbor found after
that limit has been reached is ignored. Because of the chosencollision detection algorithm and
hashing function, the result is that particles with high density, which happens to particles with
many neighbors, are forced upwards. This is because neighbors are inserted in hash key order
and lower particles have a lower hash key except for at the cell grid roof. The actual limit is
configurable and is currently set to 32. Experimentation hasshown that the maximum number
of neighbors in a typical simulation tends to stay around thelow twenties and rarely approaches
thirty.

The storage of the matrix is split into three parts: one for the non-penetration constraints,
one for the diagonal elements in the density rows, and one forthe off-diagonal elements from
the same rows. The non-penetration and diagonal blocks are stored asfloat4 arrays allocated
large enough to handle the worst case scenario where all constraints are active at once. The
off-diagonal blocks are stored in a format called “simplified jagged diagonal storage” [17]. The
format is a packed column major format where the first non-zero block from each row is stored
first in memory, allocated as a single longfloat4 array. Then the second non-zero block from
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each row is stored and so on until the selected maximum numberof blocks has been reached.
Zeros are explicitly stored when a row runs out of non-zero blocks. Paired with the non-zero
blocks is an array of integers that specifies the column indexof the stored block. The layout of
these integers in memory is exactly the same as the layout of the blocks they belong to. Also, the
sparse matrix class stores an array that contains the numberof blocks in each row. By inspecting
this value one does not need to read and operate on the extra zeros that were stored when a row
contained less than the maximum number of blocks.

One can view the storage format as a list of segments in memorywhere each row owns one
slot in each segment and there are as many segments as the maximum number of blocks per
row. When creating the matrix each row iterates over the non-zero blocks it has and places each
block in the next free slot owned by that row. The non-zero block at location(i, j) is written to
memory location

k = i +nc (7.1)

wherec is the number of non-zero blocks to the left of the current block andn is the number of
particles. The valuej is written to the same location,k, in the column index array.

The reason for choosing the simplified storage version whichstores these extra zero blocks is
to simplify the creation process. Many other sparse storageschemes requires knowledge about
the whole matrix before any elements can be written, but any row can be created independently
of the others when using the simplified jagged diagonal storage format. This fits well with the
collision detection algorithm, which handles the creationof the matrix, described in Section 7.2.

Figure 7.2:An example matrix and how it is stored in memory. a) The full matrix. White blocks
are zero elements, red blocks are non-penetration blocks, green ones are the diagonal of the
density section of the matrix and finally the blue blocks are the off-diagonal blocks of the same
section. b) The diagonal- and non-penetration blocks are stored as simple block vectors. The
off-diagonal blocks are stored in a column major format in a single long array. Paired with the
array is another array that, for each non-zero off-diagonalblock, stores the column index in the
original matrix where that block belongs.

7.1.3 Arithmetic operations

All the algorithms used throughout the library uses a multitude of operations on the vectors such
as addition, scaling, and subtraction. Most of these are trivial but the operations that involve the
sparse matrix are not. The two operations used are matrix-vector multiplication and transposed
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matrix-vector multiplication. In this subsection these two operations will be described along
with how they are implemented using the data structures introduced in the preceding subsection.

Matrix-vector multiplication

The matrix-vector multiplication performs the operationy←Gx. It uses a matrixG of sizec×n
and a vectorx of lengthn to produce a new vectory of lengthc. Each element iny contains the
dot product between the input vector and one of the rows of theinput matrix. Theith element
of y is the dot product ofx and theith row of G. The size of the matrix is dictated by the
number of simulated particlesn and is always 2n× n blocks. The multiplication operator is
only defined if the input vector has the same length as each rowin G and thus the input vector
must be a block vector withn blocks. The result will be an element vector of length 2n. The
algorithm for performing the matrix-vector product is given below whereG d is the diagonal
blocks of the density constraints part of the matrix,G o is the off-diagonal blocks andG n is the
non-penetration blocks. The data typeblock used in the listing is actually one of the primitive
CUDA vectors, but renamed here for simplicity. Each CUDA thread computes one element of
y.

Figure 7.3 illustrates the matrix-vector multiplication operation.

Listing 7.1:y←Gx
wi th one t h r e a d pe r p a r t i c l e{

/ / I n d i c e s are on the b loc k l e v e l

i n t i = t h r e a d i d ;

/ / S t a r t w i t h the d iagona l b loc k
b loc k a c c umu la to r = Gd [ i ] ∗ x [ i ] ; / / Per e le me n t m u l t i p l y

/ / Then loop over the remain ing b l o c k s
i n t rowLength = rowLengths [ i ] ;
f o r ( u i n t i t r = 0 ; i t r < rowLength ; ++ i t r ) {

i n t i nde x = i t r∗ n u m P a r t i c l e s + i ;
i n t column = columns [ i nde x ] ;

b l oc k G block = G o [ i nde x ] ;
b l oc k x b loc k = x [ column ] ;
a c c umu la to r += Gblock ∗ x b loc k ; / / Per e le me n t m u l t i p l y−add

}

/ / Wr i t e the r e s u l t
y [ i ] = sumElements ( a c c umu la to r ) ;

/ / F i n i s h w i th the non−p e n e t r a t i o n b loc k
y [ i + n u m p a r t i c l e s ] = sumElements ( Gn [ i ] ∗ x [ i ] ) ;

}

Transposed matrix-vector multiplication

The transposed matrix-vector producty← GTx is similar to the normal matrix-vector product
with the difference that each element in the output vectory is created from columns of the
input matrixG instead of rows. Because of the definition of matrix-vector multiplication, the
input vectorx must be an element vector of length 2n and the result vectory is a block vector
containingn blocks.

Because of the block skew-symmetric property of the top halfof the matrix, the content of
the columns can be found by iterating over the rows and negating all non-diagonal blocks. For
the lower half, the non-penetration block can be found, justas done in the normal matrix-vector
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Figure 7.3:Example of a matrix-vector multiplication. Blocks are colored using the pattern as
described in Figure 7.2 with color gradients to simplify comparison with Figure 7.4

product, by reading a block from the non-penetration array at the index dictated by the thread
ID.

Each time a row block is read, data from three columns of the matrix G is collected and three
components of the result vectory can be updated.

Figure 7.4 illustrates the transposed matrix-vector operation and each CUDA thread executes
Listing 7.2, calculating one element of the output vectory.

Listing 7.2:y←GTx
wi th one t h r e a d pe r p a r t i c l e{

i n t i = t h r e a d i d ;

/ / S t a r t w i t h the d iagona l b loc k
b loc k a c c umu la to r = x [ i ] ∗ G d [ i ] ; / / Sc a le the b loc k w i th the s c a l a r found in x

/ / Then add the non−p e n e t r a t i o n b loc k
a c c umu la to r += x [ i ] ∗ G n [ i ] ;

/ / F i n a l l y loop over the remain ing e le me n ts , ne ga t i ng them to ge t a column i n s t e a d o f a row
i n t rowLength = rowLengths [ i ] ;
f o r ( i n t i t r = 0 ; i t r < rowLength ; ++ i t r ) {

i n t i nde x = i t r∗ n u m P a r t i c l e s + i ;
i n t column = columns [ i nde x ] ;

f l o a t x v a l u e = x [ column ] ;
b l oc k G block = G o [ i nde x ] ;
G b lock = −G block ;

a c c umu la to r += xv a l u e ∗ G block ; / / Sc a le the b loc k by the v a lue found in x
}

y [ i ] = a c c umu la to r ; / / Wr i t e the c omp le te b loc k to y
}

7.1.4 ConstraintFluid class

The ConstraintFluid class does little work of its own. It is responsible for allocating and
initializing the data structures that are passed between helper objects, such as particle positions
and velocities, and creating the helper objects themselvesthat it uses for the bulk of the work.
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Figure 7.4:Example transposed matrix-vector multiplication. Blocksare colored in the same
way as in Figure 7.3.

When a simulation step is performed, the first step is to let the collision detector process all
collisions in the scene. This fills the constraint violations vectorg, the inverse of the diagonal of
the Schur complement matrix,Φ−1, and the Jacobian matrixG. In the process, it reorders the
particle positions and velocities as described in Section 7.2. After the collision detection step
is complete, the elements of theλ vector may be reordered to match the new ordering of the
particles. This is required for warm starting, which currently is done only for the Jacobi solver.

Next the solver is called and depending on which solver is used, different parts of the sim-
ulation is performed. The simplest solver, Jacobi, simply calculates and returns the Lagrange
multipliersλ. The other solvers, CG and preconditioned CG, include stateupdates in their al-
gorithm. So when Jacobi is used, the solver call must be followed by a call to theIntegrator
helper class. TheIntegrator uses the Jacobian matrixG, the Lagrange multipliersλ, and the
current system state to move each particle into its next state.

7.1.5 Helper objects

The only class described here is theIntegrator . The larger helper objects, the collision detec-
tor and the solvers, are described in their respective sections later in this chapter.

Integrator

The Integrator is a simple class with a single purpose. Each simulation step, unless it has
already been done by the solver, theIntegrator uses Eq. (4.10) to apply all forces, external
and from the constraints, to each particle and updates the particle position according to the new
velocity using Eq. (4.11). These are implemented in a singlekernel, except for the transposed
matrix-vector productGTλ, which is done first.

7.1.6 Data representation

Since a fluid simulation is a very dynamic process where particles move around unpredictably,
bouncing off walls and constantly interacting with new neighbors, many of the data structures
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used in the simulation must be updated every time step. The seven pieces of data that are most
important are the particle states, including positionsp, velocitiesv, and external forcesf, the
Jacobian matrixG, the inverse diagonal of the Schur complement matrixSε, calledΦ−1, the
constraint violationsg, and the Lagrange multipliersλ. The particle state is the easiest to rep-
resent. Each of the three quantities is given a block vector where the state of particlei is stored
in index i of the vector. The other data structures are not so triviallyhandled. They all contain
one entry, block or single element, per constraint currently active and the number of active con-
straints varies over time. However, there is a maximum number of possible constraints, 2n, and
the implementation prepares for the worst case scenario by allocating enough space to handle
all of them. Each such data structure is logically divided into two segments where the firstn
positions contain data related to the density constraints and the remainingn positions contain
entries for the non-penetration constraints. Also, withineach segment, the constraints are sorted
based on the particle that produced the constraint. That is,positioni in the structures contains
information about the constraint concerning the density ofparticlei and positionn+ i contains
information about the non-penetration constraint for the same particle.

Because the structures contain entries for all possible constraints, they may contain “ghost”
entries that are not really there. This happens when a particle is free from all walls, in which
case it has no non-penetration constraint, and when a particle have no neighbors, in which case
it has no density constraint. In the matrixG these entries show up as zero-only rows and in the
constraint violations vectorg they are zero elements. InΦ−1, ghost entries are marked with
inf. Theseinf markers are detected by the solvers and the corresponding element inλ is set
to zero when one is found. In this way, the constraint forces created by the ghost constraints are
also forced to zero and they have no effect on the simulation.

The simulation parametersΣ andϒ described in Section 4.2.3 are treated as matrices in the
mathematical discussions throughout this text, but since they are diagonal matrices containing
only a limited number of distinct values, they are stored as scalar constants.ϒ has the same
scalar value everywhere and can therefore be stored as a single scalar, butΣ can be different for
both types of constraints and therefore requires two scalars for this implementation.

Table 7.1 summarizes the data structures described in this section.

Name Symbol Type Size

Positions p Block vector n
Velocities v Block vector n
External forces f Block vector n
Jacobian matrix G Sparse block matrix 2n×n
Inverse diagonal Φ−1 Element vector 2n
Constraint violations g Element vector 2n
Lagrange multipliers λ Element vector 2n
Constraint compliance Σ Two scalars 2
Constraint decay rate ϒ Scalar 1

Table 7.1:List of the data organized by the highest layer in the librarystack
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7.2 Collision detection

This section describes how the collision detection algorithm works and how the CUDA imple-
mentation is partitioned into kernels. Parts of the implementation is based on the “particles”
example supplied with the CUDA SDK.

A number of simplifications have been done for the collision detection in this project. First,
objects are spheres and there is therefore no need for any bounding volumes. Also, all objects
have the same size which is the perfect situation for a space partitioning scheme with a uniform
grid. The memory requirements have been reduced by using spatial hashing and the particle
sorting technique introduced in Section 5.1.2. Because of the formulation of SPH, described
in Section 4.1, the collision detection should not return objects that overlap, but instead report
collisions where one object overlaps thecenterof another object. This is achieved by reporting
only half the particle diameter to the collision detection algorithm. When two half-sized spheres
touch, two full sized spheres with the same positions will touch each others centers. Thus, a
good cell size is the particle radius,h.

7.2.1 Algorithm

The input to the collision detection algorithm is a list of particle positions,p, the radius of the
particles,h, and the size of the spatial grid,w. Output from the algorithm is a set of collisions,
but the collisions are not explicitly stored anywhere. Theyare instead used directly to create the
data structures required at a later stage of the simulation:the Jacobian matrixG, the constraint
violationsg, andΦ−1, the inverse diagonal part of the Schur complement matrixSε.

The algorithm is based on a spatial hashing technique where the centroid of each particle is
used to calculate a cell hash key for the particle. The list ofparticles is then sorted based on
this hash, resulting in a list where particles residing in the same cell are stored consecutively in
memory. The start- and end indices of each cell in the list of particles is found during the sorting
process. Next the algorithm picks a particle and finds the hashes of the home- and neighboring
cells, as well as the start- and end indices into the sorted list of particles for those cells. The
final step of the algorithm is to test the picked particle against the other particles found in the
index ranges defined by the start- and end indices and record any collisions in the output data
structures.

Figure 7.5 shows the different lists created and how they arerelated to each other and Fig-
ure 7.6 shows how the sorted hash list is used to reorder the list of particles.

7.2.2 Data representation

All data structures in the collision detection algorithm are implemented as arrays of one of the
primitive data typesuint or float , or their corresponding vector variantsuint2 andfloat4 .

Table 7.2 show the arrays required, their sizes, types, and what they represent.

The reason for usingfloat4 instead offloat3 for particle positions is that memory trans-
actions to and from global memory can be performed much more efficiently when using using
coalesced memory operations that are possible only if each element accessed is aligned to 32,
64 or 128 bits, which afloat4 is.
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Figure 7.5:The different lists created dur-
ing the collision detection algorithm. a) A
cell hash/particle index pair is created for
each particle. b) The cell hash list is sorted
on hash key and the start of each section of
equal hash keys are found. c) The list of
particles is reordered to match the order-
ing of the hash list.

Figure 7.6:When reordering the particles,
an entry from the hash list is inspected to
find the index from which a particle should
be read, which is shown in the right column
of numbers in the figure. Then the particle
data is read from that index and written to
the same index as where the hash list entry
was found.
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Data Symbol Type Number of elements

Particle positions p float4 numParticles
Sorted particle positions q float4 numParticles
Hash list h uint2 numParticles
Start indices s uint numCells
End indices e uint numCells

Table 7.2:The arrays used by the collision detection implementation,along with their type and
number of elements.

7.2.3 Kernels

A high level algorithm description is given in Algorithm 7.2.1 and the rest of this subsection
gives a short description of how each of the steps listed in Algorithm 7.2.1 is implemented.

Algorithm 7.2.1 High level description of the collision detection algorithm.
Calculate the cell hash keys,h, for the particles.
Sorth on hash key.
Reorderp, into q, to match the ordering ofh and find the start and end of each segment with
the same hash key.
Perform the narrow phase, creatingG, g, andΦ−1.

Hash key calculation

The hash key,k, of each particle is calculated from the cell index,c, of Eq. (5.1) with the hash
function:

k = (cx modwx)+ (cy modwy)wx +(cz modwz)wxwy (7.2)

where[wx,wy,wz] is the number of cells in each grid dimension.
Since the cell index is wrapped if it is outside the cell grid,the hash values generated by

this hash function are unique for each cell within the cell grid, starting at 0 and increases up to
numcells−1. The cell hash function can be seen as a three dimensional stamp that is repeatedly
stamped over the simulated world with the first stamp’s lowercorner at the[x0,y0,z0] point used
in Eq. (5.1).

The cell hash, along with the index of the particle, is storedas a pair in a new list,h, called
the hash list, that is created such that it is initially sorted on particle index.

Algorithm 7.2.2 Cell hash generation kernel.
Given particle positionsp and cell grid dimensionsw.
i = thread id
c = [

⌊
px−x0

Sx

⌋

,
⌊

py−y0
Sy

⌋

,
⌊

pz−z0
Sz

⌋

] // Eq. (5.1)

k = (cx modwx)+ (cy modwy)wx +(cz modwz)wxwy // Eq. (7.2)
hi = [k, i]
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Hash list sorting

Sorting the hash list is actually done with three kernels that together implement the radix sort
algorithm. The source code for this was supplied with the CUDA SDK and is used with permis-
sion as stated in the CUDA SDK license agreement. A detailed description of the algorithm is
available in GPU Gems 3 [22].

Radix sort is done by counting the number of occurrences of each possible value for a given
radix in the input list and then reorder the list, using thesecounters, so the list becomes sorted
with respect to that radix. The process is repeated for each radix and at the end a fully sorted
list is produced.

The CUDA implementation is divided into three phases. The first phase performs the radix
counting, each thread block counts its own segment of the input list. The second sums these
to find reordering offsets for each entry in the list and the third performs the actual reordering,
reading an entry from the list, inspecting the value of the current radix and storing the entry at
the location indicated by the radix counter. These three phases are repeated as many times as
there are radices, four in this case.

Particle reordering

This kernel has two responsibilities. It both reorders the list of particle positions according to
the hash list and finds the indices into that list where each cell starts and ends. Each thread
requires access to the hash list entry read by the neighboring thread. The entries are passed
between threads through the shared memory, labeledmem in Algorithm 7.2.3.

Algorithm 7.2.3 Particle reordering kernel.
Given the particle positionsp and the hash listh.
i = thread id
[k1, j] = hi

mem[i +1] = k1

Synchronize.
k2 = mem[i]
if k1 6= k2 then

sk1 = i
ek2 = i

end if
qi = p j

Narrow phase

The final step of the algorithm is to find and record all collisions. For each particle, the kernel
finds the home cell and all neighboring cells and calculates their hash keys. Then the hash keys
are used to index into the start and end indices lists to find the set of indices where particles that
the current particle may collide with are stored. For each such set, for each index in the set, the
kernel looks up the position of the other particle and performs an exact collision test.

When a collision has been found, the density of the current particle is updated according to
Eq. (4.1) and Eq. (4.2), and one block,b, in the Jacobian matrixG is created using the upper
part of Eq. (4.5). Also, the diagonal block,d, is updated by adding one term of the sum in the
lower part of Eq. (4.5) and an update to the inverse Schur complement diagonalΦ−1 is made.
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When all collisions have been found, the final constraint violation is calculated according to Eq.
(4.4).

Algorithm 7.2.4 Narrow phase kernel
Given the sorted particle positionsq and the start,s, and end,e, indices for each cell.
i = thread id
Φ−1

i = 0,b = 0
ρ = mW(0,h)
for all neighboring cellsc do

k = (cx modwx)+ (cy modwy)wx +(cz modwz)wxwy // Eq. (7.2)
for all indices j 6= i betweensk andek do

d = distance(qi,q j )
if d < h then

ρ = ρ +mW(d,h)

b =−
mFi j r̂T

i j
ρ0

// Eq. (4.5)
d = d−b
Φ−1

i = Φ−1
i +b ·b

Write b to G
end if

end for
end for
if Φ−1

i 6= 0 then

Φ−1
i =

Φ−1
i +d·d

m + Σi

Φ−1
i = 1

Φ−1
i

else
Φ−1

i =inf
end if
gi = ρ

ρ0
−1

Write d to G

7.3 Solvers

Three iterative solvers have been implemented for this project. The first, and primary, solver
is the simple Jacobi method and the others are two versions ofthe Conjugate Gradient (CG)
method.

The equation to solve, described in Chapter 4, is formulatedas
(

1
m

GGT + Σ
)

λ = (ϒ− I)Gv−
4
∆t

ϒg−
∆t
m

Gf (7.3)

and should be solved forλ. The right hand side can be pre-computed and is for the sake of
clarity henceforth denoted byb. The equation to solve is thus

(
1
m

GGT + Σ
)

λ = b (7.4)

whereG is a sparse, up to 2n×3n matrix,m is a scalar constant andΣ a dense diagonal 2n×2n
matrix. Bothλ andb are dense vectors.
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What complicates matters slightly is the fact thatGGT is significantly less sparse thanG.
That, in conjunction with the arithmetic cost, makes it undesirable to explicitly create the com-
plete system matrix1mGGT +Σ. Instead, the full expression is used and algebraic manipulations
are done to reduce the number of operations required for eachiteration.

As noted in Section 7.1.6, the system may contain invalid elements, called “ghost” entries.
It is the responsibility of the solver to ensure that any element in λ dependent on such ghost
entries are set to zero.

7.3.1 Jacobi

The main reason for choosing the Jacobi solver is that it is highly parallel and therefore fits well
with the CUDA architecture.

The definition of the Jacobi method, as described in Section 6.1, is

λ(k+1) = Φ−1(b−Rλ(k)) (7.5)

whereΦ is the diagonal part of the system matrix andRcontains the rest of the elements. Since
the full system matrix is inaccessible, Eq. (7.5) must be rewritten using the components from
Eq. (7.4). First, observe that

1
m

GGT + Σ = Σ+
1
m
diag(GGT)

︸ ︷︷ ︸

Φ

+
1
m

GGT −
1
m
diag(GGT)

︸ ︷︷ ︸

R

(7.6)

wherediag is a function that returns the diagonal elements of a matrix.Using the definitions
from Eq. (7.6), the Jacobi iteration function is found to be

λ(k+1) =

(

Σ+
1
m
diag(GGT)

)−1(

b−
(

1
m

GGT −
1
m
diag(GGT)

)

λ(k)
)

. (7.7)

Since

−
1
m
diag(GGT) = Σ−Φ, (7.8)

we can rewrite Eq. (7.7) as

λ(k+1) =

(

Σ+
1
m
diag(GGT)

)−1(

b− (
1
m

GGT + Σ−Φ)λ(k)
)

(7.9)

Restoring allΦs gives

λ(k+1) = Φ−1
(

b− (
1
m

GGT + Σ−Φ)λ(k)
)

(7.10)

which can be rewritten as

λ(k+1) = λ(k) + Φ−1
(

b−Σλ(k)−
1
m

GGTλ(k)
)

(7.11)

In the end, what is needed is the inverse of the diagonal part of the system matrix,Φ−1, which
stays constant throughout the solver process, and the ability to create the product1mGGTλ. The
diagonal matrixΦ−1 is created by the collision detector and supplied to the solver as an element
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vector and1
mGGTλ is created in several steps, first formingx← GTλ and theny← Gx using

the matrix-vector operations described in Section 7.1.3 and finally scalingy with the scalar1m.
To improve stability of the simulation, only half of the update of Eq. (7.11) is added, result-

ing in a relaxed Jacobi implementation.

Algorithm

The input to the solver is the Jacobian matrixG, the constraint violationsg, and the inverse Schur
diagonalΦ−1, all created by the collision detector, as well as the particles’ current velocities,
the external forces, and the simulation parameters described in Chapter 4. The solver starts by
creating the right hand side and then enters the iteration loop, which it runs a fixed number of
iterations. A discussion on the number of required iterations is given in Section 8.3. In the loop,
the matrix-vector operations are performed and the result is stored in temporary vectors and then
the iteration kernel is launched. The kernel performs the evaluation of Eq. (7.11) that remains,
i.e., the per-element additions, subtractions, and multiplications that are required to finish the
update ofλ.

Algorithm 7.3.1 Jacobi solver

GivenG,g,v, f,m,∆t,ϒ,Σ,λ(0)

t1 = Gv
t2 = Gf
b = (ϒ− I)t1−

4
∆t ϒg− ∆t

m t2

iters= 0
repeat

iters= iters+1
t1 = GT λ
t2 = Gt1

λ = λ+0.5(Φ−1(b−Σλ− 1
mt2))

until itersexceeds a maximum limit

The iteration kernel is launched with one thread per constraint, which is the same as the
number of elements in the vectors of Eq. (7.11). Thus, each thread reads one element from each
vector, performs a series of scalar multiplications, additions, and subtractions to finally produce
a piece of the new solution for the Lagrange multipliersλ. To handle the ghost constraints, the
kernel first reads the element inΦ−1 and checks for theinf marker. If found, the kernel sets its
element in the newλ to zero and returns immediately.

7.3.2 Conjugate Gradient

To increase development speed and make comparisons with thereference Matlab implementa-
tion easier, the CG solver was implemented using as many BLAScalls as possible. BLAS, Basic
Linear Algebra Subprograms, is a standardized set of operations on matrices and vectors and a
CUDA implementation is supplied with the CUDA SDK. The implementation can of course not
work on the application specific sparse matrix format, so matrix-vector operations must use the
operations described in Section 7.1.3.

The listing in Algorithm 7.3.2 details the steps of the algorithm.
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Algorithm 7.3.2 The implemented Conjugate Gradient algorithm

GivenG,g,v, f,m,∆t,ϒ,Σ,λ(0)

RHSb = mv+ ∆tf
RHSc =− 4

∆t ϒg+ ϒGv
v = 1

m(RHSb +GTλ)
λdir = Σλ +Gv−RHSc

r =−λdir

w = r · r
iters= 0
repeat

fdir =−GTλdir

vdir = 1
mfdir

α = w
fdir ·vdir+λdir ·Σλdir

λ = λ+ αλdir

v = v+ αvdir

r = RHSc−Gv−Σλ
w1 = r · r
β = w1

w
λdir =−r + βλdir

w = w1

until w is small oritersexceeds a maximum limit

7.3.3 Preconditioned Conjugate Gradient

The preconditioned version of the conjugate gradient solver is very similar to the plain CG solver
described in the preceding subsection. The difference is the inclusion ofΦ−1 as a preconditioner.
The diagonal matrixΦ−1 contains special markers for the so called ghost entries andthese must
be set to zero before they are used in any BLAS call. Setting them to zero ensures that the final
solution forλ will contain zeros at the same locations.

The implemented algorithm is listed below.

7.4 Demonstrator

The demonstrator is implemented as a separate application that includes the constraint fluid
library and uses it to run a fluid simulation that is rendered on the screen. It uses OpenGL for
the rendering and GLUT for user interactions. It is implemented as a startup function that creates
theConstraintFluid object, a set of callbacks required by the rendering system and a small
set of application specific classes that control the fluid andmakes the render calls to OpenGL.
The startup function also reads the given command line arguments by which the user can control
some aspects of the simulation, such as the number of particles, the size of the container, the
simulation frequency, and more.

One of the classes is a simple wrapper over the fluid simulation. Its purpose is to control if
the fluid simulation should be updated or not for each frame and if so, make thestepSimulation
call to the fluid. The other class handles rendering. Each frame, after the fluid wrapper has had
its chance to run a simulation step, the renderer fetches thevertex buffer object identifier as-
sociated with the buffer storing particle positions and thesame for the buffer storing particle
colors. It then renders the particles using a shader programsupplied with the CUDA SDK and



7.4. Demonstrator 51

Algorithm 7.3.3 The implemented preconditioned Conjugate Gradient algorithm
RHSb = mv+ ∆tf
RHSc =− 4

∆t ϒg+ ϒGv
λ,e,epre,d, r ,v,vtmp = 0
vtmp = 1

m(GTλ+RHSb)−v
r = Gvtmp+ Σλ
e= RHSc− r
epre = Φ−1e
d1 = epre ·e
d2 = d1

iters= 0
repeat

iters= iters+1
β = d2/d1

d1 = d2

d = epre+ βd
vtmp = 1

mGTd
r = Gvtmp+ Σd
γ = d · r
α = d1

γ
λ = λ+ αd
e= e−αr
epre = Φ−1e
d2 = epre ·e

until d2 is small oritersexceeds a maximum limit
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used with permission as stated in the CUDA SDK end user licence agreement. The end result
is that particles are rendered as spheres colored by the current density. By default, the radius
of the rendered spheres are set to half the influence radius. This means that spheres that barely
touch each other represent particles that have a very small influence on each other, but also that
overlaps between particles are larger than they appear. This is most apparent in the splashes of
the screen captures in Section 8.4.



Chapter 8

Results

The focus of this project is performance and the goal is to simulate hundreds of thousands
of particles at interactive rates. However, no specifics wasgiven in the specification on the
number of frames per second that is considered interactive rates. For the sake of this discussion,
anything more than ten frames per second will be regarded as interactive. The following two
sections discusses how well this goal has been met, and also some scalability limitations on the
number of particles that can be simulated. In particular, itis the memory requirements that poses
a hard limit on the size of the simulated system. In the last section, the demonstrator application
is evaluated and compared to the goal formulations that mention it.

8.1 Performance

A series of tests have been conducted and the time required for the different parts of the library
measured using the timing capabilities of the CUDA device. All tests were run on an NVIDIA
GTX 280 graphics card hosted by an Intel Core i7 processor. The timings only include the
simulation itself and not other aspects of the application such as rendering and user interaction.

The tests were run with an increasing number of particles placed inside a container with a
square bottom large enough to create a fluid between twenty and thirty particles deep, if the test
contained enough particles to do that. The Jacobi solver wasused exclusively for this test, see
Section 8.3 below for a performance comparison between the different solvers, using twenty
iterations per time step. The simulation frequency was three hundred time steps per second and
the simulation parameters set according to Table 8.1. Table8.2 lists the test configurations that
were run. Each simulation was run for several hundred time steps until the fluid had calmed
down and ten frames after that were timed. All ten data pointsare plotted in the the following
graphs.

The series of figures that follow illustrates the results of these tests. First, Figure 8.1 shows
the time required for the whole simulation update, counted from the beginning of the call to
ConstraintFluid::stepSimulation() until the return to the application. The graph shows
the total time, as well as the time required for the individual parts. It is clear that the solver
requires the most time, followed by the collision detection. Data reordering and state update are
negligible. The figure also indicates a clear linear relationship between simulation time and the
number of particles. Figure 8.2 shows the total time per simulated particle. It shows that more
particles let the application utilize the parallel hardware more efficiently and that at least 25,000
particles should be simulated for high efficiency.
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Figure 8.1: The time required to perform a
state update for an increasing number of par-
ticles. The time for the four components of a
state update is also shown.

Figure 8.2: The time required to perform a
complete update divided by the number of
simulated particles.

The remaining figures divides the data sets of Figure 8.1 intotheir respective components.
Figure 8.3 shows how the time spent in the collision detectoris distributed. The most costly
operation for the collision detector is the narrow phase, where each particle is tested against its
neighbors and the output data structures are created. Due toimplementation details in the timer
framework created for this project, the timings for the solver can not produce timings for each
individual solver iteration. Instead, the time for all solver iterations is returned and compared
with the time to create the right hand side, which is shown in Figure 8.4. Figure 8.5 compares
the cost of one solver iteration with the other solver-related operations by dividing the recorded
time for the solver iterations by the number of iterations. Section 8.3.1 contains a more detailed
discussion about the time requirements of the solvers. Finally, Figure 8.6 shows timings for the
operations performed by the integrator.

Figure 8.3: Timings for the collision detection. The narrow phase, where the output data is
generated, is by a large margin the most costly operation.
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Figure 8.4: Timings for 20 iterations of the
Jacobi solver. The iterations are significantly
more expensive than the creation of the right
hand side.

Figure 8.5: In this graph, the time for the
solver iterations has been divided by the num-
ber of iterations to make a comparison be-
tween a single iteration and other parts of the
library possible.

ε 0.0001
τ 4
Frequency 300 Hz
Solver iterations 20

Table 8.1:Simulation parameters for the performance tests.

To conclude the performance section, the following was stated about performance in the
Problem statement section of Chapter 2.

The primary goal of the project is to have a working demonstrator for the fluid that can
simulate hundreds of thousands of particles at interactiverates and even larger systems at non-
interactive rates.

The tests have shown that 100,000 particles can be simulatedat about 20 frames per second
and 250,000 particles at about 10 frames per second. While far from real time, this is still
considered to be interactive. The test containing one million particles is an example of what
is referred to as an “even larger system” in the problem description and this scenario can be
simulated at 2.5 frames per second.

8.1.1 CPU comparison

A performance comparison has been made with a CPU implementation available at Algoryx.
The CPU implementation uses a Gauss-Seidel solver, performing five iterations per time step,
and was run on a 2.8 GHz Xeon processor. Prior usage of the CPU based simulator has shown
that five iterations are sufficient for stable simulation when using a Gauss-Seidel solver and five
iterations are therefore used here as well. The results fromthese tests are shown in Figures 8.7
and 8.8.



56 Chapter 8. Results

Figure 8.6:Timings for state updates.

n Container size (m) n Container size (m)

1 0.03 1,000 0.15
2 0.03 5,000 0.3
5 0.06 10,000 0.45
10 0.06 25,000 0.6
25 0.09 50,000 0.9
50 0.09 100,000 1.2
100 0.09 250,000 2.1
250 0.09 500,000 2.7
500 0.09 1,000,000 4.2

Table 8.2:Number of particles and container sizes for each performance test.

Tests were run with up to 250,000 particles and it is clear that the GPU implementation is
faster, even with the difference in the number of solver iterations performed. Figure 8.8 shows
the speedup that the GPU implementation gives compared to the CPU implementation. As the
size of the system increases, so does the speedup and for the largest system, 250,000 particles,
a speedup of 50 was attained.

For comparison, the execution time of one solver iteration of the CPU Gauss-Seidel solver
is graphed together with the execution time of one Jacobi iteration for the GPU implementation
in Figures 8.9 and 8.10. In this case, the speedup was even larger and approaches 100 for the
systems containing 100 thousand particles or more.

8.2 Memory usage

Figure 8.11 shows how the memory consumption increases for the performed tests. Clearly the
Jacobian matrix requires the most amount of space at almost 650MiB for one million particles.
Second largest is color data at about 45MiB and after that no data buffer is much larger than
15MiB.
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Figure 8.7:Simulation time for the CPU and
the GPU implementations. The GPU version
is significantly faster.

Figure 8.8: The speedup achieved for the
CPU comparison tests.

Figure 8.9:Execution time for one solver it-
eration of the CPU and the GPU implementa-
tions.

Figure 8.10:Speedup for the solver iterations.

8.3 Solver comparison

This section compares the performance of the different solvers that has been implemented, and
also makes a qualitative comparison between them to motivate why Jacobi was chosen as the
primary solver.

8.3.1 Performance

Figure 8.12 shows the cost, in milliseconds, to run the solvers on the one million particles
performance test with an increasing number of iterations. While Jacobi is faster than the other
two, the difference is not significant. For a given number of iterations, Jacobi requires about
20% less time to complete. To show the cost per iteration, Figure 8.13 shows the average
time per iteration for the same scenario. The reason for the decrease in time per iteration is
because the one-time cost of creating the right hand side is included, a cost that diminishes
with increasing number of iterations. A profile of a solver iteration in a simulation involving
one million particles is shown in Figure 8.14, where Jacobi and CG are compared. They both
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Figure 8.11:Memory usage for the different buffers.

contain one set of matrix-vector and transposed matrix-vector multiplication and it is clear that
it is these two operations that dominate both solvers.

Figure 8.12:Timings for an increasing num-
ber of solver iterations.

Figure 8.13:Average time for each solver it-
eration. Timings include startup overhead,
which produces the decreasing graphs shown.

8.3.2 Convergence

The first solver to be implemented was Jacobi, since it is the simplest solver and the one easiest
to map to the highly parallel CUDA platform. However, it proved more difficult than expected
to get stable simulations and one of the aspects that was inspected in order to find the cause
of the instabilities was the solver. A set of Matlab programshad already been written to ver-
ify that the CUDA Jacobi solver produced the same results as aJacobi solver that had been
implemented in Matlab and these Matlab programs were extended to include other solvers as
well. Two solver methods were chosen for the comparison. Thefirst was Gauss-Seidel, since
successful constraint fluid simulations has used this solver. The second was Conjugate Gra-
dient, CG, since it has been implemented for the CUDA platform by others, as mentioned in
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Figure 8.14: Profile for one solver iteration of Jacobi and CG. The matrix operations are the
most costly operations.

Section 2.5. The actual Matlab implementations used were found in the Scientific/Educational
Matlab Database [13].

The errors discussed in the following text and shown in the figures below have been created
by importing all data generated from the application into Matlab and there calculated as

||Sελ−b||2 (8.1)

This expression is evaluated once for each solver and iteration.
Prior testing had shown that fluid instabilities always occurred in areas of high density and

the comparison with the Matlab solvers were therefore done using a small scene with a succes-
sively denser fluid. The result from the first run is shown in Figure 8.15. The setup for this
test was a normal fluid with the highest density of any particle being 3% too high. The figure
show that Jacobi and Gauss-Seidel perform very similar and that CG, after some fluctuations,
produces a very accurate result. As the density of the fluid isincreased, Jacobi produces less
and less accurate results, as shown in Figure 8.16 where the average fluid density was 188%
too high. All three solvers converged, but Jacobi convergedslower than the others. This is il-
lustrated more clearly in Figure 8.17 and 8.18 where the errors for Jacobi and Gauss-Seidel are
shown with a shorter span for the vertical axis. The difference grows as the number of iterations
increases, as seen in Figure 8.19. When the fluid is further compressed, as in Figure 8.20, Jacobi
starts to fail. Both Gauss-Seidel and CG can produce the desired result, but the Jacobi solver
bounces between two very inaccurate solutions. As the density is increased a little more, to
217% shown in Figure 8.21, Jacobi starts to diverge.

Unfortunately, the fast convergence of CG is not maintainedwhen the number of particles
is increased and running any decently sized simulation using the CG solver is painstakingly
slow, requiring several hundreds, up to thousands, of iterations for a thousand particles. A
preconditioned version of CG has been implemented to speed up the convergence, but lingering
bugs makes it unusable at this point.

The reason for the instabilities in a normal fluid simulationusing the Jacobi solver appears
to be caused by the degrading accuracy of the Lagrange multipliers λ. As the fluid begins to
compress against the floor due to gravity, Jacobi starts to produce inaccurate solutions which
fail to properly counteract the compression, resulting in even higher densities in the next time
step and thus even less accurate constraint forces. As the density increases,Sε begins to loose
its diagonal dominance which eventually leads to divergence.

In addition, the low number of solver iterations limits the rate of pressure propagation in the
fluid as each Jacobi solver iteration only propagates corrections to the solution a short distance
in the system. Consider a scenario where a rectangular blockof fluid is falling towards the floor.
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Figure 8.15:Rate of convergence for a nice
fluid. Jacobi and Gauss-Seidel produces sim-
ilar results, but CG is considerably better.

Figure 8.16:Solver convergence for a com-
pressed fluid. Jacobi produces less accurate
results compared to Gauss-Seidel in this sce-
nario.

Figure 8.17:Comparison between Jacobi and
Gauss-Seidel for a nice fluid. They both reach
a similar result, but Gauss-Seidel reaches it
with fewer iterations.

Figure 8.18:Comparison between Jacobi and
Gauss-Seidel for a compressed fluid. Ja-
cobi does not manage to achieve the accuracy
Gauss-Seidel gives.

At the time step where the lowest layer of particles hits the floor, the Jacobi solver propagates
the effect of the collision two particle layers up for each iteration. If the number of performed
iterations is too low, none of the topmost particles become aware of the event and continue
falling undisturbed. This further increases the density and leads to a spongy fluid.

The number of Jacobi iterations required for a stable simulation depends on a number of
properties of the simulated fluid. As hinted above, a thick layer of particles requires more iter-
ations to propagate events though the whole fluid, and high relative velocities between particles
also increases the need for more iterations, since a higher velocity gives deeper penetrations
when two particles meet and consequently higher densities.Both of these problems can be
countered by reducing the length of the time step. Shorter time steps let the simulator restore
violated constraints earlier, and any constraint violation will be smaller since particles can move
shorter distances between time steps. Also, the regularization parameterε can be increased to in-
crease stability in a fluid. The simulator becomes less forceful in restoring constraint violations
whenε has been increased, giving a system matrix that is more well-conditioned. The draw-
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Figure 8.19:The difference between Jacobi and Gauss-Seidel increases as more iterations are
performed.

Figure 8.20:Rate of convergence for a highly
compressed fluid. While both Gauss-Seidel
and CG converges, Jacobi is oscillating be-
tween two very inaccurate solutions.

Figure 8.21:When the fluid is compressed a
little further, Jacobi starts do diverge.

back is that the fluid becomes more compressible. Using the configuration given in Table 8.1,
100,000 particles can be simulated with reasonable resultsand a million particles simulated if
high velocities and high piles are avoided. A reduction of the number of iterations to ten will
still be able to simulate a million particles, but the density can locally increase significantly and
the fluid will never come to rest because of the excessive spongyness. Five iterations will pro-
duce spongy and unstable simulations even for 100,000 particles and two iterations fails even
for 10,000 particles. One iteration can barely run 800 particles in a stable simulation.

8.4 Demonstrator

The problem statement outlined in the beginning of this report, Section 2.1, states that the
demonstrator should be able to visualize the fluid as it is being simulated and also be able
to produce a dam break scenario.

The finished demonstrator can visualize the fluid in real timeand also produce the dam break
scenario described in the problem statement. In addition, the demonstrator enables the user to
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give specifications on the fluid and the world in which it is simulated. The user can supply
startup parameters to the demonstrator, through which, forexample, the number of particles,
the number of solver iterations, the size of the container, and the initial position of the dam
wall can be specified. During runtime, the user can have a limited interaction with the fluid
by changing the gravity vector and initiating the dam break.The dam wall can be moved in
three ways. The first is the actual dam break, where the dam wall is moved from its current
position to the far edge of the cell grid. Any particles that were stacked up behind the wall will
begin to flow towards the new wall position. The other two wallmoving operations initiate a
constant movement of the dam wall in either direction, either squeezing the fluid together or
letting it flow outwards. It is not recommended to squeeze thefluid too tight, since that will
bring instabilities to the fluid, or to initiate a full dam break when the dam wall is extended
outside the cell grid, since that may place particles far into the wall. Deep penetrations create
large penetration forces, which in turn creates large velocities and possibly instabilities to the
fluid.

Other features include continuous or single time stepping of the simulation, camera controls,
display of the current frame rate and some state inspectionsof the fluid. Data that can be
inspected are the current particle positions, density constraint violations and the distribution of
the number of neighbors each particle has. Also, the demonstrator can print the memory usage
of the fluid, detailing how much memory is used for each part ofthe library.

A screen capture of a dam break with 100,000 particles is shown in Figures 8.22 to 8.27.
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Figure 8.22: A wall of fluid held back by a
dam.

Figure 8.23:The dam has been broken and
fluid is flowing out into the container.

Figure 8.24:The fluid hits the far end of the
container and is being pressed upwards.

Figure 8.25:Due to gravity, the fluid comes
falling down again.

Figure 8.26: The fluid is beginning to calm
down.

Figure 8.27:The final wave.
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Chapter 9

Conclusions

The purpose of this maters’s thesis was to evaluate the performance benefits possible by imple-
menting the constraint fluid method for the highly parallel graphics hardware. The goal was to
simulate hundreds of thousands of particles at interactiverates, which is currently not possible
on conventional processors. This report has shown that all steps of the simulation can be per-
formed in a parallel fashion and that the entire simulation fits well with the architecture of the
target platform. The performance goal was reached since a hundred thousand particles can be
simulated in twenty frames per second, and a speedup of fifty was achieved compared to the
existing CPU implementation.

An important discovery that was made during the course of theproject is that the Jacobi
method is not well suited to solve the systems of equations that are generated during the sim-
ulations. Jacobi diverges during certain conditions and thus causes instable simulations, in
particular in areas of high density. The CPU implementation, which uses Gauss-Seidel instead
of Jacobi, does not have these problems.

9.1 Limitations

While the developed software can simulate the systems described in the problem description,
the lack of a working preconditioning for the CG solver is a serious limitation that leaves Jacobi
as the only practical solver. The significant part of the total simulation time that is taken by the
solver makes it a candidate for optimization efforts and themajor time consumer in all solvers is
the matrix-vector operations. Any speedup achieved for these operations translate to an almost
equal speedup for the entire application when many iterations are performed. Also, the memory
requirements are quite large and imposes a hard limit on the maximum number of particles that
can be simulated. On the GTX 280 card used during the development, the maximum number of
particles is about 1,128,000, which requires 994MiB of memory on the device.

In summary, to improve the performance of the application, one area to investigate further
is the implementation of the sparse matrix and its operations and the problems with the precon-
ditioning of the CG solver since an efficient preconditioning can reduce the number of required
solver iterations significantly.
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9.2 Future work

Apart from the aforementioned optimization possibilities, there are many more changes that can
be done to the library that will increase its usefulness.

The current implementation is the most basic simulation possible, the only simulated entity
is the fluid and the only thing it can interact with is an axis aligned box. To make the simulation
more useful, it is necessary to add interactions between thefluid and solids such as boxes,
cylinders and triangle meshes. The non-penetration constraints could be used to make the fluid
aware of the solids, but the current implementation would see the solid as a fixed wall and has
no way to push on it. In other words, things can not float. An easier addition to the simulation
that enables some interesting scenarios is to apply a heightmap to the container. Both the level
and the normal of the floor can be found from the height map and creating the non-penetration
violation from that will allow a designer to make non-flat surfaces that the fluid can flow on,
modeling for example a river in a landscape.

All simulated particles are currently created and positioned at the beginning of the simu-
lation and all of them are always updated each simulation step. This makes particle emitters
impossible since there is no way to create new particles. Attempts have been made to run the
simulation on a subset of the particles and create emitters by including more particles as the
simulation progresses, but unfortunately, initial attempts failed and other aspects of the library
were prioritized.

Regarding the lack of a mathematical foundation for the gradient function used in the simu-
lator. While the choice of gradient function gives improvedstability, it is not at all satisfactory
that the choice of kernel function is so arbitrary. This is animportant area for future research
and, preferably, one would like to rely on a guiding physicalprinciple for deriving or choosing
optimal kernel functions.
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Chapter 11

Terminology

ALU - Arithmetic Logic Unit
Hardware that performs numerical calculations on integer numbers.
AMD - Advanced Micro Devices
A semiconductor company that develops computer processorsand related technologies.
ATI - Array Technologies Incorporated
A company developing graphics processing units. In 2006, ATI merged with AMD.
Cache
Very fast, but small, memory where frequently used data are stored temporarily to reduce the
number of accesses to the slower memories lower in the memoryhierarchy.
CG - Conjugate Gradient
An iterative method used to solve systems of linear equations.
Constraint surface
The set of object positions where a constraint is satisfied.
CPU - Central Processing Unit
Unit in a computer that fetches and executes instructions.
CTM - CloseTo Metal
Hardware interface released by AMD in 2006.
CUDA - Compute Unified Device Architecture
A development platform developed by NVIDIA that gives programmers direct access to the
computational hardware of CUDA-enabled devices through a small extension to the C program-
ming language.
Device
A CUDA-enabled hardware that executes kernel code.
FPU - Floating Point Unit
Hardware that performs numerical calculations on floating point numbers.
DRAM - Device Random Access Memory
Memory physically located on a device.
GeForce
A family of graphics cards by NVIDIA designed for the entertainment market, most notably
video games.
GPU - Graphics Processing Unit
Hardware that specializes in graphics-related operationssuch as geometry rasterization, trans-
formations, and texture filtering.
GPGPU - General-Purpose Computations on Graphics Processing Units
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The use of graphics hardware for non-graphics computations.
Host
The CPU that launches kernels and performs memory copies is the host in a CUDA system.
Indicator function
A function that increases as a constraint violation is increased and is zero on the constraint sur-
face.
Kernel
Code in a CUDA program that is executed on a CUDA device.
Quadro
Family of graphics hardware targeted for Computer Aided Design (CAD) and digital content
creation developed by NVIDIA.
SIMT - Single Instruction, Multiple Threads
The architectural design of the Streaming Multiprocessors. Each SM can only issue one instruc-
tion at a time, but each SM harbors several threads that are free to follow independent execution
paths.
SM - Streaming Multiprocessor
A hardware unit on a CUDA device that executes the threads of athread block.
SP - Scalar Processor
The cores of a Streaming Multiprocessor that perform scalararithmetic.
Stream
An ordered list of homogeneous data elemets.
Tesla
A family of hardware developed by NVIDIA based on the graphics cards but optimized for
general-purpose computing.
Warm starting
Using the solution from the previous time step as the initialguess for the current time step when
using an iterative solver.
Warp
A set of CUDA threads that physically executes in parallel.
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