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Abstract

�is thesis explores a method for upscaling and increasing the visual �delity of

coarse soil simulation. �is is done through the use of a High Resolution (HR)-

based method that guides �ne-scale particles which are then rendered using ei-

ther surface rendering or rendering with particle meshes. �is thesis also ex-

plores the idea of omi�ing direct calculation of the internal and external forces,

and instead only use the velocity voxel grid generated from the coarse simu-

lation. �is is done to determine if the method can still reproduce natural soil

movements of the �ne-scale particles when simulating and rendering under real-

time constraints.

�e result shows that this method increases the visual �delity of the rendering

without a signi�cant impact on the overall simulation run-time performance,

while the �ne-scale particles still produce movements that are perceived as natu-

ral. It also shows that the use of surface rendering does not need as high �ne-scale

particle resolution for the same perceived visual soil �delity as when rendering

with particle mesh.
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Abbreviation list

HR

High Resolution

FPS

Frames per second

DT

Time step

EMA

Exponential moving average

SSM

Screen space mesh

ms

milliseconds

PIC

Particle-in-Cell

FLIP

Fluid-implicit-particle
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1 Introduction

Physics based real-time simulations are used for a multitude of reasons, where for example

one of these are training simulators. Training simulators are an important part of the industry

because they alleviate the strain on training new operators and training for new vehicles. An

important factor for training is immersion, which can help operators focus on the training

part. Good rendering is an important factor for helping to increase the immersion factor. Soil

simulation follows in that it can for example be used for the training of excavator use.

�us if there are visual artifacts in the rendering then the immersion can be broken. �is

is why this thesis explores how to increase the visual �delity of soil simulation, speci�cally

one which is simulated using coarse spherical bodies.

�e introduction also provides the structure of the thesis, background of the cooperation,

a detailed problem formulation, and a research question.

1.0.1 Outline

�e outline of the thesis:

• Chapter 2: �eory explains theory for understanding this thesis and this chapter also

explores previous work that is related to this thesis.

• Chapter 3: Method describes the implementation of the chosen method.

• Chapter 4: Results presents the results of the implemented method both in terms

of visual and performance, where performance also includes a time distribution of the

algorithm.

• Chapter 5: Discussions discusses the results from Chapter 4.

• Chapter 6: Conclusions where conclusions regarding the method and the results are

discussed along with future work.
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1.0.2 Algoryx

Physics based real-time simulation of soil mechanics has been made possible through e�cient

implementation of validated models and with the help of faster computers. Algoryx Simula-

tion, Umeå, is a company specialized in developing tools for the training simulator industry,

engineering companies, and heavy machine manufacturers. Recently Algoryx have devel-

oped a new earth moving module, capable of simulating realistic soil mechanics in real-time.

�e project was done in cooperation with Algoryx Simulation AB. Algoryx Simulation AB

develops and sells the product AGX Dynamics, which consists of libraries for simulating ar-

ticulated and contacting multibody systems. �e customers integrate these libraries into their

products and develop simulators and other tools for an end-customer market. �e simulators

are used for operator training, virtual prototyping and for developing autonomous, intelligent

machines, and more.

AGX Dynamics C++ SDK comes with a basic rendering pipeline and C#, and Python bindings.

Algoryx is also working together with companies such as EPIC Games (Unreal Engine) and

Unity (Unity3D) on integrations into their products. E�cient and realistic rendering is essen-

tial for the overall experience of the product.

1.1 Problem formulation

Real-time rendering of soil comes with numerous challenges, where the main challenge is that

the application has to be run in real-time which creates a limited time budget for rendering

and simulation. �is limited time budget creates a problem in creating a visually realistic and

appealing soil rendering. If only simulation particles are used to render the soil a tremendous

number of particles would have to be simulated to render soil in a visually realistic fashion,

but this is not reasonable for real-time rendering and simulation because of the high compu-

tational expense in simulating these simulation particles. In this context, a simulation particle

means a fully simulated particle in terms of internal and external forces. Instead coarse simu-

lation particles (large particles) can be used for the simulation part but this then deviates from

visual realism. �us another approach is needed to create a more visually realistic dynamic

soil rendering, other than just rendering these particles as is.

1.1.1 Research questions

�is thesis implements a High Resolution (HR) Granular based approach with surface genera-

tion for rendering dynamic soil, given an underlying physical model. �us the thesis explores

if this approach can be used to create a visually compelling dynamic soil, which will be de-

termined by visual inspection. Visual inspection in this case means that the visual �delity is

assessed by the author and by experts in physic based simulation at Algoryx. �is is done in

this way because measurable visual �delity assessment is not readily available. In addition,

the thesis also evaluates the performance impact of such a model on the overall simulation

time, to evaluate if the HR Granular based approach with surface generation can be used in

real-time simulation.
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2 �eory

�is chapter explores and covers important concepts and backgrounds used in this thesis. It

also covers a deeper look into related works on the bigger concepts used for this thesis.

2.1 Computer graphics

�is section covers and explains important concepts related to the �eld of computer graphics.

2.1.1 Real-time rendering

Rendering is the process of displaying and creating a 2D image on a screen of a 3D object

or environment, by the use of shading, texturing, and more. �us real-time rendering is the

process of rapidly rendering theses images in concern with intractability. �e measurement

of real-time rendering is done by measuring either the number of frames/images that get

rendered each second or by the delay between each frame/image. With intractability in mind,

i.e. the fact that a user’s inputs can change the scene by moving the camera or a�ecting the

objects in the environment, one wants a delay as low as possible between each frame to get

as smooth and interactive experience as possible. With this, there is no real de�ned point

regarding to what counts as real-time rendering, but at a rate of around 6 frames per second

(FPS) one starts to get a sense of interactivity with the image which grows until around 30-

60 FPS where diminishing returns of intractability starts to come into play. Exactly when

diminishing returns start depends on the use case [1].

2.1.2 Polygon mesh

A polygon mesh represents the shape of a 3D object by a collection of vertices, edges, and

faces/primitives which is used in computer graphics to render objects. A face can be a multi-

tude of constructions but the most common in computer graphics is that a face is a triangle,

i.e. a triangle mesh. A vertex is a data structure that contains a point in space, generally a

3D space point, a normal, a texture coordinate, and more. �e edge is thus the connection

between vertices and the face, is a set of edges that in this case constructs the triangle.

3



2.1.3 Billboard

A billboard is an orientated rectangle texture mesh based on the camera view direction and

position. �is means that as the camera position and view direction change the billboard’s

orientation also changes to match. �is matching is generally done either in all axes or only

a subset of them. Billboards are a simple and common technique to render VFX e�ects such

as �re, smoke, explosions, and more. �is can be done by rendering the billboard which is

a�ached to the position of a particle and textured with an alpha texture, see Figure 1, which

shows a normal planar billboard but also a spherical billboard.

Figure 1: Planar and spherical billboard of �re and smoke VFX e�ect [2].

2.1.4 Spaces

In computer graphics and rendering there are generally four main di�erent spaces. In order

of transformation; Object/Local space, World Space, Camera/View space, and Projection/Screen
space. Transformations between these spaces are done by transformation matrices called in

order of transformation; Model matrix, View matrix, and Projection matrix. �is transforma-

tion can also go the other way around by using the inverse of these transformation matrices.

Object/Local space denotes the mesh/object internal coordinates meaning how the vertices that

build up the mesh/object correlate to each other in space. World Space then correlates to the

coordinates in the world, i.e. how objects correlate to each other in the world/environment.

Camera/View space can be seen as world space transformed so that the objects are in front of

the camera, i.e. how the object related to the camera. �us Projection/Screen space is the view

space but projected as a camera lens would, i.e. oblique or perspective projection, meaning we

get viewed depth in the screen where the coordinates are de�ned as the pixels of the screen.

Figure 2: Di�erent spaces and the corresponding transformation matrix [3].
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2.1.5 Graphics pipeline

�e general graphics pipeline can be seen in Figure 3 [1].

• Vertex shader is the process and program which works on vertices. �e main purpose

of the vertex shader is two-fold; calculating the position of the vertices and evaluating

vertex data such as normals and texture coordinates.

• Geometry shader is the process and program for generating new vertices and primi-

tives given another primitive.

• Clipping is the process of removing vertices that lie outside of the view volume. If the

clipping process removes a subset of a triangle new vertices are created on the clipping

edge.

• Rasterization is the process of transforming vertices into fragments. �is is done by

�nding all the fragments that lie inside of the primitives. �e vertex data, i.e. normals,

and texture coordinates are interpolated to generated new values for each fragment.

• Fragment shader is the shader that works per each fragment/pixel, for shading each

fragment; i.e. calculating shadows, ambient occlusions, specular light, di�use light, and

more.

• Output bu�er is where the resulting data from the graphics pipeline process is held

while waiting to be displayed or used in some other way.

Vertex
shader

Geometry
shader

Clipping
& Rasterization

Fragment
shader

Output
buffer

v1

v2
v3

v1

v2
v3

v2
v3

v1

v4

Figure 3: General graphics pipeline, where green stages can be fully modi�ed by the imple-

mentation of shaders, but not the blue stages.
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2.1.6 Compute shader

�e compute shader is a more special shader than other shaders, and lives outside of the gen-

eral graphics pipeline. �e compute shader’s specialty comes from that it is a general-purpose

shader, meaning that they are used and meant to work for computing general computing tasks

on the GPU instead of just working on triangles. �us the introduction of compute shaders

for the GPU means that one can do more complicated programs on the GPU highly e�ciently

if they are parallelizable. �e compute shader works by se�ing up how many threads in each

-,., / dimension that shall be run for each group, where- ·. ·/ ≤ 1024 and / ≤ 64 in HLSL

for compute shader version cs 5 0. �e program is then run by a dispatch call where one

de�nes how many of these threads groups in each dimension should be started.[4] In short if

one wants to compute # process in the - dimension the number of dispatch in that direction

follows Equation 2.1, where -̂ is the resulting number of dispatch in - direction.

-̂ =

⌈
#

-

⌉
(2.1)

2.1.7 Depth Maps

A depth map in computer graphics is an image/texture containing information about the

distance from the camera to all objects in the camera view, with perspective in mind. Depth

map is also interchangeable with z-bu�er and depth bu�er.

2.1.8 Normal calculation

When it comes to rendering one can generally dived normals into two types; vertex normals

and face normals. Face normals are thus normals from faces. Face normals can be calculated

from Equation 2.2 where ?0, ?1, ?2 are tree vertex positions of the triangle face and =>A<0;8I4

is the function to divide the input value by its norm.

=5 = =>A<0;8I4 ((?1 − ?0) × (?2 − ?0)) (2.2)

Vertex normals are normalized vectors that come out from the vertex. Vertex normals can be

calculated in several ways, with one way being to calculate the face normals of the faces that

use the vertex and then averaging that value. �is can be seen in Equation 2.3 where< is the

number of faces connected and =5 8 is the 8 face normal.

=E = =>A<0;8I4

(∑<
8=1
(=5 8)
<

)
(2.3)
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2.2 Physic simulations

�is section covers and explains important concepts related to the �eld of physics and general

simulations. �is section also gives a brief explanation of the coarse soil simulation used.

2.2.1 Real-time simulation

Simulation is as the name states the process of simulating something, in this case, dynamic

cut-able soil. Real-time simulation is thus a simulation that shall be done in real-time. In

contrast to what was stated in Section 2.1.1, the de�nition of real-time rendering was fuzzy

as to what counts as real-time. �is is not the case for real-time simulation. Where it can

be found from the time step (DT) of the simulation by following Equation 2.4, for example, a

time step of 0.02B would imply an update frequency of 50 hertz. �is hard de�nition can then

be transferred to real-time rendering of real-time simulation by the fact that the rendering

needs to be faster or as fast as the update frequency, meaning that in the example stated one

would need at least 50 FPS.

5 A4@D4=2~ =
1

�)
(2.4)

2.2.2 Coarse simulation

For the purpose of this thesis, the coarse simulation will mainly be treated as a black box. But

there are two main points that need to be revealed and addressed about the coarse dynamic

cut-able soil simulation. Firstly cut-able in this case means that dynamic soil particles spawn

from a cu�ing force in a static soil heightmap which separates the dynamic soil from the

static soil, meaning that dynamic soil particles are spawned. Secondly what dynamic means

and refers to in this case, which is two-fold. Dynamic in that the soil particles can move

freely in all axes, meaning that particles internal forces will be needed to be calculated such

as collision and friction; external forces such as gravity; collision, and friction with external

bodies. Dynamic in this case also means that when particles are spawned from a cu�ing force

they spawn with a certain mass and radius that correlates to each other, but this mass and

radius is not static and can decrease or increase in size until a max point which can be seen

in Figure 4.

Max
radius

Spawned
particle

Figure 4: Coarse soil particle mass and radius expansion.
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2.2.3 Voxel grid

A voxel grid is simply a regular grid in three dimensions that has a transformation matrix

such that a world-coordinate can be translated to a voxel grid index. �is means that one can

divide the world into voxels, meaning that one can store data in these and handle the data and

simulation in a voxel based view which is discrete instead of a continuous normal simulation.

Figure 5 shows how a regular voxel grid works.

Voxel

Z
Y

X
s

s

s

Voxel grid

Figure 5: Voxel grid.

2.2.4 Velocity grid

�e velocity grid is a voxel grid, whereas the name states the velocity grid stores information

about the velocity in a speci�c voxel. �is velocity represents the coarse soil particle velocity

weighted and interpolated using Equation 2.5 where = is the number of in�uencing particles,

E8 is the 8 particle’s velocity, F8 is the weight of particle 8 which is based on the distance

between the particle and the voxel center.

EE>G4; =

∑=
8=1
(E8 ·F8)∑=

8=1
(F8)

(2.5)

2.2.5 Mass grid

�e mass grid is also a voxel grid. �e mass grid stores the information about the total mass

in a speci�c voxel. �e total mass comes from the particle mass following equation 2.6, where

= is the number of in�uencing particles,<8 is the 8 particle’s mass,F8 is the weight of particle

8 which is based on the distance between the particle and the voxel center. �e mass of each

active voxel is thus the range (0.0, 1.0], where a mass of 1.0 indicates that the voxel is full.

<E>G4; =

∑=
8=1
(<8 ·F8)∑=
8=1
(F8)

(2.6)
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2.3 Filters

�is section covers relevant �ltering algorithms used within the context of this thesis project.

2.3.1 Exponential moving average

Exponential moving average (EMA) is a �rst-order in�nite impulse response �lter. A �rst-

order in�nite impulse response �lter means that it is a recursive �lter with resulting values

in�uenced by the current value and previous input and output. EMA thus works by applying

weighting factors to exponentially decrease the e�ect of older values to the �ltered value. �is

results in that EMA smooths change of changing values over time. �e EMA �lter follows

Equation 2.7; where . is the observation, ( is the EMA value and U is the smoothing factor

[0, 1], where 0 results in the EMA to be constant at the initial observation and 1 results in the

EMA to be the current observation. Values of U in the range of (0, 1) is thus the weight from

the current observation into the current EMA.

(1 = .1 (2.7a)

(C = U · .C + (1 − U) · (C−1 (2.7b)

2.3.2 Gaussian �lter

Gaussian �lter is a �lter for blurring values together by the use of a Gaussian function ap-

proximation. Gaussian �lter is mainly used for blurring images. Equation 2.8 can be used

to apply a Gaussian �lter onto a 2D image, where �5 8;C4A43 is the �ltered image, ? is the 2D

coordinates of the current �lter point, Φ is the set of points around and including ? , � is the

Gaussian function de�ned in Equation 2.9. From Equation 2.9, f is the standard deviation of

the distribution.

�5 8;C4A43 (?) =
∑

?8 ∈Φ � (?8)� (?8 − ?)∑
?8 ∈Φ� (?8 − ?)

(2.8)

� (G,~) = 1

2cf2
4
−G2+~2

2f2
(2.9)
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2.3.3 Bilateral �lter

Bilateral �lter is also a �lter for blurring values together, mainly for the use of blurring and

smoothing images. But in contrast to a Gaussian �lter, Bilateral �lter is edge-preserving,

meaning that the resulting �ltered images will still keep edges a�er the blur. Equation 2.10

can be used to apply a Bilateral �lter onto a 2D image, where � is the �ltered image, � is

the input image, ? is the current �lter point in the image, Φ is the set of points around and

including ? , 5 is a range kernel function generally Gaussian function, 6 is a spatial kernel

function also general a Gaussian function.

�(?) = 1

,

∑
?8 ∈Φ

� (?8) 5 (‖� (?8) − � (?)‖)6(‖?8 − ? ‖) (2.10a)

, =
∑
?8 ∈Φ

5 (‖� (?8) − � (?)‖)6(‖?8 − ? ‖) (2.10b)
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2.4 Related work

�is section covers and explores previously done work that is related to this thesis in the

concepts of; particle rendering, �ne-scale particles, and surface generation.

2.4.1 Particle rendering

To render particles in a 3D graphical program there generally exist two di�erent approaches

of rendering singular particles. �e �rst and most simple in terms of computational cost and

ascetics is to render these particles using billboards, this method was for example used by

Haglund et al. in 2002 [5] to render particle based snow�akes. �e other more computational

expensive option is to render these by rendering a mesh of the particle, both spherical and

non-spherical meshes depending on what the particle represents.

When rendering particles that represent a clump of ma�er a third main option also exists,

which is to generate a surface of the particle cloud which is explored in section 2.4.3. �is

also then includes hybrids of using billboards and mesh rendering with surface generation.

2.4.2 Fine-scale particles

�e process of decoupling the rendering data and process from the simulation data and pro-

cess can be seen as started by the development of PIC (Particle-in-Cell), used in water simu-

lations by Harlow in 1957 [6] which was later improved into FLIP (�uid-implicit-particle) by

Brackbill and Ruppel in 1985 [7]. A combination of FLIP and PIC was later used to animate and

simulate sand as a �uid by Zhu and Bridson in 2005 [8]. Generally speaking, these methods

maps the simulation onto a velocity grid which in turn is used to move the simulation par-

ticles, the simulation particle’s velocity is then also interpolated into the velocity grid again.

�is means there is a start to decoupling of the simulation and render data but it is not entirely

there yet, and these methods are generally not real-time.

Another approach is using a large scale or coarse particle simulation, and then doing a sec-

ond �ne-scale simulation that is guided by the coarse simulation, this was �rst done by Sony

Pictures Imageworks in 2007 [9] as far as the author knows to render and animate sand. �is

was later developed into a more concrete simulation by Ivan et al. in 2009 [10], which uses as

before a coarse particle simulation, and then interpolating these coarse particles to guide the

internal forces of the �ne-scale particles. �is method was later modi�ed by using the gran-

ular in�uence of outside forces and another kernel function for internal force interpolation

by Ihmsen et al. in [11] instead of just using a cut o� when there is only a small number of

neighboring coarse particles. �ese methods, when they were implemented, were not used for

real-time simulation and rendering, based on two points. Firstly the number of small particles

is too large, and that external forces still in�uence the �ne-scale particles.
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2.4.3 Surface generation

In the �eld of surface generation, there are many algorithms for creating and generating a

visual or geometric surface from a point/particle cloud. One of the most popular and well-

known surface generation algorithm is Marching Cubes which was �rst presented by William

E. Lorensen and Harvey E. Cline in 1987 [12]. Marching Cubes in short is an algorithm that

works in world space and uses a particle cloud to generate a mesh by calculating triangles and

edges based on these particles. An evolution of the Marching Cubes algorithm is an algorithm

called screen space mesh (SSM) which was presented by Ma�hias Müller in 2007 [13], which

as the name suggests, works in screen space to generate a surface mesh of the point cloud.

Generally speaking, this is done by using a Marching Cube algorithm in screen space given

a projection of the point cloud. �e SSM method claims to get a performance increase over

the traditional Marching Cubes algorithm. �e SSM algorithm has for example been used in

Vortex by CMLabs to generate a surface for their soil particle representation [14].

A more interesting approach to generate a visual surface representation of the particle cloud

is Particle Spla�ing, by Bart Adams in 2006 [15]. Instead of generating an explicit surface

mesh of the particle cloud, this approach blends the particles, resulting in a visual surface.

According to the article, Particle Spla�ing does not su�er from the temporal discretization

artifacts when particles move, which is a notable problem in the Marching Cube algorithm,

when using a smaller grid resolution. Derived from this another interesting approach that

also does not generate an explicit surface mesh of the surface, is Screen Space Fluid Rendering
with Curvature Flow, by Laan and Green and Sainz in 2009 [16] when rendering a particles

cloud surface. �is was later presented as Screen Space Fluid Rendering for Games, by Green in

2010 [17]. �is method was meant to be used as a basis for rendering �uids in games in a fast

and computationally e�ective manner. �e basis of this technique is to render the particles to

a depth map, smooth the depth map, then use that depth map to render the particle surface

based on the camera, i.e. in screen space.
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3 Method

�is chapter covers how the research question from Section 1.1.1 will be answered. �is

comes from showcasing the �ne-scale simulation in the form of management of particles and

the simulation/moving of �ne-scale particles. It also includes the visual aspects in how the

surface generation of the particle cloud is performed.

3.1 Fine-scale simulation

�e �ne-scale simulation can be split into two parts; managing particles, i.e. spawning and

removing particles, and simulating/moving particles. �e method of moving particles is based

on the fact that the simulation ignores external and internal forces on the render particles

and only calculates their movement from the coarse particles. �is means that the �ne-scale

particle simulation can be highly parallelized as the particles do not a�ect each other, which

suits simulation on the GPU. �e management of the particles is thus not as suited for the

GPU because it is not as easily parallelizable and the fact that data needs to be created and

removed, thus this part is done on the CPU.

3.1.1 Manage �ne-scale particles

1. Update mass/velocity grid, using EMA

2. Sort coarse particles into X, Y, Z columns

3. Get particle data from GPU

4. For each particle remove the corresponding mass on each mass voxel. If the mass value

in the voxel is negative, despawn the particle.

5. For each voxel with mass le� spawn an appropriate number of new �ne particles in that

voxel.

6. Send new particle bu�er to the GPU.
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Mass/velocity grid update

Each time step, an extra representation of the mass and velocity grid is updated using EMA

as explained in Section 2.3.1. �e reason to use EMA is to create a smoother transfer of the

grid. �is is needed for two main reasons. �e �rst reason is to achieve smoother start and

end spawning, in that particles gradually spawn instead of all appearing at the same time.

�e second reason is when the grid moves the use of EMA gives the �ne particles smoother

transfer between voxels.

Sorting coarse particles

All coarse particles get sorted each frame into columns using X, Y, and Z axes of the voxel

grid, and in the columns themselves, the coarse particles are sorted by the position of the

column axis. �ese columns are based on the voxel size.

Spawning particles

When particles are spawned they spawn in a randomly selected place inside their designated

voxel, but the spawning zone inside of this voxel can be decreased in all axes. �e decrease

in an axis depends on the coarse sorting, by that a particles shall not spawn where there is

no coarse particle in�uence, this can be seen in Figure 6. �e reason for this restriction of the

spawning zone in a voxel is to make a more natural like spawning of the particles and a less

box-like spawning of particles. When particles are spawned they also get a random selected

UV-coordinate to colorize the particle cloud by a terrain texture.

Coarse
Particle

Voxel

Voxel 
currently 

spawning fine
 particle

Restricted
spawning

area

Figure 6: Particle restricted spawning 2D version.

Despawning particles

Particles get despawned when a particle is either inside of a voxel with zero mass or when

Equation 3.1 holds. In Equation 3.1, Φ is the set of particles inside the voxel," is a function to

get mass of a particle,<E is the mass of the voxel in question, and n is an extra mass addition

generally double the value of a single particle mass. �us as long as this holds particles will

be despawned from the voxel. �e reason for n is to create a bu�er for despawning particles

in order to reduce particle �ickering.
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<E + n <
∑
?∈Φ

" (?) (3.1)

3.1.2 Simulating �ne-scale particles

1. Transform the velocity and mass grid to a bu�er of active voxels.

2. Send bu�ers to the GPU.

3. Call dispatch following the rules from Section 2.1.6.

On the GPU, for-each particle, Equation 3.2 is used to calculate the velocity of the particle.

From Equation 3.2, E? is the resulting velocity of the current particle; Φ is the set of indices

of voxels that surround the current particle, % gives world position given index, + gives the

velocity of a voxel given index, " gives the mass of a voxel given index, BE>G4; is the size of

the voxel, and ??>B is the current particle’s world position.

, (8) =<0G (0, 1 −
38BC0=24 (??>B , % (8))2

BE>G4;
) (3.2a)

E? =
1∑

8∈Φ(, (8) ·" (8))
·
∑
8∈Φ
(, (8)+ (8)" (8)) (3.2b)

To update a particle’s position in time step 8 Equation 3.3 is used. From Equation 3.3, E8 is the

calculated velocity of the particle on time step 8 , �) is the time step and ?8 is the particle’s

position at time step 8 .

?8 = E8 · �) + ?8−1 (3.3)
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3.2 Surface rendering

�e method chosen for generating a visual surface of the soil particle cloud, is a version based

on screen space �uid [16, 17]. �is method in contrast to SSM as an example is not particle de-

pendent, excluding the depth map generation and it does not, as previously stated in Section

2.4.3, generate an actual surface mesh. �is means that excluding the depth map generation,

the number of particles in the simulation should not a�ect the performance of this algorithm.

Instead, the performance factor comes from screen resolution and which blurring algorithm

is chosen.

�e surface rendering algorithm:

1. Generate depth map.

2. Blurring/Smoothing of the depth map.

3. Render full screen quad.

4. Calculate normals given the depth map.

5. Shading.

Depth map

To generate the depth map of the particle cloud, particles are rendered by the use of a billboard

that is oriented toward the camera with depth replacement in the fragment shader, to give

a spherical depth to the billboard. �e depth replacement in the fragment shader is done by

Equation 3.4. From Equation 3.4, C is the UV coordinated of this fragment, 54 is a function to

create a 4D vector, ?E84F is the fragment’s position in view space, A is the radius of the particle,

"? is the projection matrix, and one also checks if (=G~ · =G~) > 1.0 then one discards that

fragment because it lies outside of the sphere. In the process of generating the depth map, a

UV map is also created with the randomized UV values from the particles set in the UV map.

=G~ = 2C − 1 (3.4a)

=I =

√
1 − (=G~ · =G~) (3.4b)

2G~IF = 54(?E84F + = · A, 1) ·"? (3.4c)

34?Cℎ =
2I

2F
(3.4d)

Smoothing

�e purpose of the smoothing step is to generate a visual surface instead of a cloud of spheres.

�is is done by applying a smoothing/blurring algorithm to the depth map. �ere is a mul-

titude of di�erent blurring algorithms but the chosen one is the bilateral �lter explained in

Section 2.3.3, which has the important property of edge-preserving. Edge-preserving is an

important property for rendering a visual surface because otherwise, depth values will blend

outside of the actual surface. �ere is one problem with the bilateral �lter and that is that it is

distance independent. For water or other transparent materials, the property of the bilateral
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�lter being distance independent does not greatly a�ect the look, but for opaque materials

such as soil, this becomes a problem. Because as the camera moves further away from the

soil it will appear as if it is shrinking, which is not as visible for transparent materials. �us a

modi�cation needs to be done to make the bilateral �lter distance dependent. �is modi�ca-

tion can be done by changing the constant f values of the Gaussian functions 5 and 6 which

can be seen in Equation 3.5. From Equation 3.5; f5 is the f for 5 , f6 is the f for 6, B5 is a

constant range scaling value for 5 , B6 is the constant spatial scaling value for 6 and 3 is the

depth value of the pixel that is currently being �ltered.

f6 = B6 · 3 (3.5a)

f5 = B5 · 32
(3.5b)

�e UV map also needs to be included in the blurring stage, this is to blend colors between

particles. �e blurring step on the UV map can be done by a less computational expensive

approach than the depth blurring. �us a GPU implemented Gaussian �lter which has been

explained in Section 2.3.2 is used.

Full screen quad

To render the surface a full screen quad is used, wherein the fragment shader the depth of the

fragment is replaced by the depth value in the depth texture. By using this, it is possible to

render the surface directly without an explicit surface mesh.

Normals from depth map

To introduce lighting to the surface in the fragment shaders one needs to calculate normals

of the surface. �e normals can be calculated from the depth map. �e technique used in

this thesis to calculate the normal of a fragment given a depth map is based on vertex normal

calculation, which was explained in Section 2.1.8. �e four face normals are thus calculated by

sampling the neighboring corners of the current depth map position, given by the fragment’s

UV coordinate. �ese neighboring corner position and the current position are then used

to form four triangles, which the face normals are calculated from. �ese four face normals

are then averaged and normalized to generate the vertex normal, i.e. �nal normal for this

fragment.

Shading

�e shading that is done in the fragment shader for this thesis is a simple di�use shading from

a directional light source.
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4 Results

�is chapter covers the result from Chapter 3, including visual inspection of the coarse and

�ne-scale simulation with either particle mesh or surface rendering. �is chapter also includes

performance measurements of the tested method with the same setup as the visual inspection,

and �nally a time distribution of how the GPU and CPU time is utilized.

4.1 Visual inspection

�e scenario that will be used for testing the method is one where a shovel linearly moves

in one direction cu�ing the static soil and thus creating dynamic soil. �us dynamic soil will

continuously increase in volume and mass, meaning that as the simulation runs, more and

more rendering particles will be used. A scenario where the shovel drops soil is in addition

also shown. �e reason these shovel scenario are of interest is that they mimic simpli�ed

real-world examples, i.e. an excavator.

From Figure 7 one can see the coarse version of the simulation using particle meshes dur-

ing di�erent simulation steps. From Figure 8 one can see the equivalent coarse simulation

using surface rendering.

From Figures 9-16 one can see the equivalent ground simulation using the �ne-scale ren-

dering process with either particle mesh rendering or surface rendering, with decreasing �ne

particle mass, i.e. increasing resolution of the rendering.
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(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 7: Particle mesh rendering of coarse particles.

(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 8: Surface rendering of coarse particles.
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(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 9: Particle mesh rendering of �ne particles with particle mass 0.1.

(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 10: Surface rendering of �ne particles with particle mass 0.1.
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(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 11: Particle mesh rendering of �ne particles with particle mass 0.01.

(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 12: Surface rendering of �ne particles with particle mass 0.01.
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(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 13: Particle mesh rendering of �ne particles with particle mass 0.001.

(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 14: Surface rendering of �ne particles with particle mass 0.001.
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(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 15: Particle mesh rendering of �ne particles with particle mass 0.0001.

(a) Simulation step 150 (b) Simulation step 300

(c) Simulation step 550 (d) Simulation step 800

Figure 16: Surface rendering of �ne particles with particle mass 0.0001.
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Figure 17 showcase the visual aspects of the �ne-scale rendering with a scenario where the

soil falls of the shovel to present that this is not just a deformable terrain rendering and

simulation.

(a) Particle mesh rendering

(b) Surface rendering

Figure 17: Comparison of falling �ne particles with either mesh or surface rendering, with a

particle mass of 0.001.
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4.2 Performance results

�e performance data was capture on a machine with the GPU: NVIDIA GeForce RTX 2070
SUPER and the CPU: Intel(R) Core(TM) i7-7700K CPU@ 4.20GHz. �e resolution of the display

screen was set to 800x608 and the �lter kernel size was set to 32x32x1 and for the �ne-scale

simulation, the kernel size was set to 1024x1x1.

Figure 18 shows the performance results from the surface rendering of the simulation shown

in Section 4.1, where the computation time is the frame-to-frame time. From Table 1 one can

see how many particles existed at the last frame, which was capped at frame 1200.
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Figure 18: Averaged data from �ne-scale with surface generation comparison.

Table 1 Number of particles at frame 1200 with surface rendering.

Mass Number of particles

0.1 1045

0.01 10409

0.001 107710

0.0001 1278720
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Figure 19 shows the performance results from particle rendering of the simulation shown in

Section 4.1 and from Table 2 one can see how many particles existed at the last frame, which

was capped at frame 1200.
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Figure 19: Averaged data from �ne-scale with particle mesh comparison.

Table 2 Number of particles at frame 1200 when rendering with particle mesh.

Mass Number of particles

0.1 1011

0.01 10252

0.001 109357

0.0001 1447406
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Figure 20 shows the baseline performance data of only the coarse simulation using either

surface rendering or particle rendering. �is graph is used as a baseline for the performance

impact of the �ne-scale simulation.
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Figure 20: Averaged data from coarse particle mesh and surface generation comparison.

Figure 21 shows the combined data of all the �ne-scale simulations, to show how computation

time corresponds to the number of particles for both of the two rendering types. An important

point in this is the 20ms marker of computation time, as it correlates to 50 FPS which in Table

3 one can see the border of how many particles are needed to cross the 20ms marker.
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Figure 21: Averaged data from �ne-scale with surface generation number of particles com-

parison.
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Table 3 Number of particles existing when the averaged performance reached the 20 ms

marker.

Type Number of particles

Particle Mesh 341293

Surface rendering 467410

Figure 22 shows the variance of the averaged data from the computation time. �is variance

comes from two aspects, �rstly the di�erence between frame and time step; secondly the fact

that a skip value : is used to skip CPU particle management each : time steps.
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Figure 22: Variance of �ne particle surface generation of mass 0.001.
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4.3 Time distribution

Figure 23 shows the CPU time charts of the particle management algorithm and Figure 24

shows the whole GPU time charts. �ese values have been generated from a deep pro�ler as

such the data might not 100% showcase the real percentages as some interaction might su�er

more from the pro�ler, but this should still give a good overview of how the CPU and GPU

time is spent and distributed.

• Get data from GPU, the sum of all the waiting for the GPU to complete its current task,

and the transfer sum of all the GPU to CPU transfer time.

• Check and remove mass, the function that removes mass from the mass voxel grid for

each particle and also checks if each particle should still be alive based on the mass

voxel grid.

• Bu�er data, send data to the GPU.

• Data conversions, data conversion between two di�erent coordinate systems used.

• Clone grid and sort coarse particles, creating the EMA voxel grid and the sorting of the

coarse particles in all axes for the restricted spawning system.

• Spawn particles, the act of going through all the active voxels and if there is mass le�,

spawn �ne-scale particles.

• Dispatch, send dispatch call to the compute shader.

• Filter, the smoothing/blurring step algorithm that is used on the depth map and on the

UV map.

• Fine-scale simulation, i.e. the act of calculating the velocity of each �ne-scale particle

and updating the particle’s position.

• Draw mesh and draw depth map, the drawing of random meshes and the creation of the

�ne-scale particle depth map.

• Idle, i.e. the idle time of the GPU.
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Figure 23: CPU time distribution of particles surface generation with 0.001 mass.
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Figure 24: Whole GPU time distribution of particle surface generation with 0.001 mass.
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5 Discussions

�is Chapter covers discussion around the results generated in Chapter 4 using the method

described in Chapter 3, where the results both concern visual results and performance results.

Side-note: A CPU only version was �rst developed to test if/and compare if the data transfer between the
GPU and CPU was going to be a bo�leneck for the simulation that needs to happen each time step. It was
concluded that the parallelism of the GPU outweighed the data transfers time so the CPU only version was
scrapped and will not be included.

5.1 Visual

�e �rst aspect that needs to be discussed concerning the visual side of the method and the

result is how particles move. If one were to just use the velocity data from the velocity grid

one would get a very blocky/rigid movement from the �ne-scale particles based on the vox-

els, i.e. the �ne-scale particles does not move in a natural way if one only directly uses the

velocity data. �us one can introduce interpolation of the surrounding voxels based on the

distance from the center of the voxel to the particle. �is results in that a more natural and

smoother movement of the �ne-scale particles emerges. Lastly, a new weight modi�er is in-

troduced to the interpolation where the weight is based on the mass of the voxel. �is results

in two properties. Firstly the particles will move in a mass-oriented way, meaning that the

particle will move in the way of the most mass. Secondly, it removes the drag created by vox-

els with zero mass and velocity, meaning that particles that are at the edge of the voxels will

not lag behind and thus do not need to be removed for occupying space with no mass in them.

�e second visual aspect concerns spawning and despawning of �ne-scale particles. As stated

in Chapter 3 particles are spawned based on the mass of a voxel, if there is mass le� a�er tal-

lying all the particle’s mass in the voxel, then, new particles will be spawned randomly inside

the voxel. If there is less mass in the voxel then particles will be despawned. �is would

create a rather blocky pa�ern of particles but there are two aspects that combat the blocky

voxel pa�ern. �e �rst is that the particle movement interpolation reduces the blocky pa�ern

over time. �e second aspect comes from the restricted spawning system, which restricts the

spawning of particles in a voxel to where coarse soil particles have an in�uence. �ese two

aspects reduce the block pa�ern and create a more natural soil particle look. But the artifact

can still be seen in certain scenarios.

An EMA �lter as said in Chapter 3 is used on the mass grid, this results in two visual prop-

erties. �e �rst property and most visually obvious property is that the particles will fade

in and out when spawning and despawning, reducing the discrete popping e�ect that occurs

when particle spawn and despawn from the static soil. �e second property the EMA gives

is a more stable spawning and despawning system, in that as the coarse soil moves EMA

gives more time for the �ne-scale system to move and follow which results in fewer particles

spawning and shortly a�er despawning, i.e. particle �ickering. �e particle �ickering e�ect
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is also damped by the mass bu�er n from Equation 3.1.

�ere is another visual artifact that shows using this system other than the block pa�ern.

�is visual artifact follows from that the �ne-scale particles do not care about external forces

such as gravity. �is results in that the �ne-scale particle will �oat. �is artifact is not as

prevalent when rendering with surface rendering as particles will blend together.

�e increasing resolution of the �ne-scale particle has a direct e�ect on the visual �delity,

but the e�ect on the visual �delity varies depending on if particle mesh rendering or surface

rendering is used. As the resolution of the �ne-scale particles increases, one can see a direct

continuous improvement in the visual �delity of the particle mesh rendering. However, as

the particle mass starts to get lower than 0.001 then the rendering �delity starts to get dimin-

ishing returns as the resolution of the particles from a reasonable distance gets small enough

for it to start to look like noise. For rendering with surface generation one does not get the

noise problem when using small scale particles and the point at which increasing the resolu-

tion only gives diminishing returns in visual �delity starts earlier at around a particle mass

of 0.01 to 0.001. �is results in that to get a high visual �delity one does not need as high

of a �ne-scale particle resolution when rendering with surface rendering instead of particle

meshes.

�us combining all that has been discussed and the �gures from Section 4.1 one can start

to form a comparison between the coarse rendering and the �ne-scale rendering. Comparing

the coarse particle mesh rendering with the �ne-scale rendering, it can be noted that even

with the simpler velocity calculation of the �ne-scale particles just the fact the number of

particles increases results in an increase in visual �delity. Using surface rendering on top of

this gives more depth to the soil rendering in terms of believability that soil is what is being

rendered. Using surface rendering directly on the coarse particles does not give a perceived

visually pleasing result. �is comes from two facts, �rstly that there is too li�le visual in-

formation to render a convincing depth map of the soil surface and secondly the size of the

particle means that the surface generation looks distorted.

5.2 Performance

From Figure 18 and 19 one can note that the performance measurements using the hardware

shown in Section 4.2 is adequate. �e main requirement stands that the �ne-scale rendering

shall have an as low impact as possible on the overall performance of the simulation and the

aligning goal that run-time cost should in this case not exceed the 20 ms marker. To this it

can be seen from Figures 18 and 19 that the simulation does not exceed the 20ms marker and

stays under the 20 ms marker as long as the mass of the �ne-scale particles does not approach

0.0001, meaning more than 450k particles.

From Figure 21 which shows how many particles are being rendered and simulated in re-

sponse to the performance of the two rendering methods. From that graph, it can be seen

that the computation time grows linearly with the number of �ne particles used. From Figure

21 one can construct a comparison between the performance impact of the two rendering

methods. From this graph, two main points can be concluded when comparing the rendering

methods, �rstly that the surface rendering methods gives be�er performance than the particle

mesh rendering methods. �is comes primarily from the number of triangles that needs to
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be rendered as with a high number of particles is too high even with a rather simple particle

geometry of around 80 triangles per particle. Secondly as can be seen from the graph the

particle mesh rendering starts to increase earlier than the surface rendering method and a�er

which they increase at around the same pace. �e early increase of the particle mesh render-

ing shows that the particle mesh rendering version is more expensive but as the number of

particles increases the main bo�leneck of the �ne-scale rendering and simulation lies in the

simulation and not in the rendering of the �ne-scale particles.

As stated before from just Figure 21 one could conclude with a high degree of certainty that

the bo�leneck of the method described in Chapter 3 lies in the simulation part. Continuing

from this, if one focuses on Figure 22 which shows the variance of the computation time. �e

variance as explained in Section 4.2 mainly comes from the fact that a skip value is used to

skip CPU work each : time step, i.e. not doing any particle management and only simulating

the particles in the GPU. One can see that as the time goes on and within the number of par-

ticles increases the variance also increases, this points towards that the main bo�leneck lies

in the CPU work, i.e. the management of particles. Because if the main bo�leneck lied in the

GPU work then the variance would not be as high and would not increase as much overtime

as it does.

5.3 Time distribution

�e time distribution data presented in Section 4.3 shows where there is still time budget to

be used, where a bo�leneck might exist, and thus where to look for in terms of performance

improvement opportunities. From Figure 24 which shows the whole GPU time distribution,

one point is reinforced which was concluded from Section 5.2. �is point being that the sur-

face rendering does not have a great impact on the performance of the whole simulation as

the drawing of the depth map and �ltering the depth map only just exceeds 3% of the GPU

time used and most time used is for the �ne-scale simulation and rest is just idle time, which

gives the method room to still grow concerning GPU usage.

�e more interesting time distribution �gure is Figure 23 which shows just the �ne-scale

particle management CPU time usage. Most of the time is spent on the particle mass check-

ing and mass removing from voxels. �is speci�c part is thus an algorithm that is based on the

number of particles each using and modifying the temporary voxel grid mass data, to check if

they should live or not. �is algorithm is thus not a trivial one to parallelize for performance

improvement. �is comes from that all particles share the same data point, i.e. the voxel grid.

�us if one wants to parallelize the algorithm, the point of parallelization would need to be

from the active voxels and not the particles. �is is not trivial because of how the particles

need to be stored for both the CPU and the GPU calculations.
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6 Conclusions

�e purpose of this thesis is to investigate a way to upscale the rendering and with that in-

crease the visual �delity of the coarse soil simulation, with spherical discretization. �e meth-

ods chosen and created for the investigation were an HR-based method that uses a coarse sim-

ulation to guide a more simple �ne-scale simulation, which was rendered using either surface

rendering or particle meshes. �us this chapter will cover conclusions of the method based

on Chapter 4 and Chapter 5, i.e. Results and Discussions. At the end of this chapter possible

future work related to this thesis will also be covered.

�e upscaling of the coarse simulation is done by using the coarse simulation to guide a

�ne-scale simulation where this �ne-scale simulation does not calculate the direct external

and internal forces and instead only uses the velocity from the velocity voxel grid with the

use of interpolation. Where the use of the interpolation and of a restricted spawning system

reduced the visual block pa�ern, but this visual artifact can still be seen in certain scenarios.

An increase in visual �delity of the coarse rendering is achieved without a huge impact on

the overall simulation performance, were huge in this case means not dropping under the

50 FPS mark. Where the perceived sweet spot when min-maxing the visual �delity to the

performance is at a particle mass of around 0.01 − 0.001 when the rendering mode is surface

rendering.

When comparing the use of surface rendering to the particle mesh rendering mode it can

be seen that surface rendering does not need as high particle resolution for the same per-

ceived visual �delity. It was also shown that the visual artifact of �oating particles was also

reduced using surface rendering.

Finally and summarizing, this thesis presents a method for upscaling and thus increasing

the visual �delity of a coarse soil simulation without a huge impact on the overall simulation.

6.1 Future work

�ere are two aspects concerning the work in this thesis that would need future work and

investigation; performance improvements, and improvement of the visual quality of the soil

rendering.

When it comes to performance improvements, i.e. optimization of the method, it is shown

that the current bo�leneck lied in the CPU management of the particles. �us an interesting

point to look at is how one can manage the particle data in such a way that one can parallelize

the particle management on the CPU in an e�cient way. �e other way to go is to look into if

a signi�cant part of the current CPU particle management can be o�oaded to the GPU, which

is non-trivial because data needs to be created and destroyed based on the whole set.
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�e �rst part of the visual side to look into, which this thesis did not, is shading and lighting,

i.e. look into how one can introduce more complex shading techniques in the shaders to fur-

ther increase the visual �delity without huge performance impacts.

�e second part of the visual side is to look into how di�erent blurring/smoothing �lters

might a�ect the look of the soil surface rendering. In other words how di�erent �lters might

be be�er for di�erent types of soil or if there is one that works for most types of soil with the

right texturing.

�e �nal visual aspect to look into is to further reduce the perceived discrete popping e�ect

that occurs when particle spawn and despawn from the static soil, i.e. to hide the transition

between the static height map and the dynamic soil rendering. �is e�ect was reduced by the

use of EMA, but the e�ect still persists.
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