
STREAMING DATA MODELS FOR

DISTRIBUTED PHYSICS

SIMULATIONWORKFLOWS

Martin Vikdahl

Master �esis, 30 credits
Supervisor: Paolo Bientinesi

External supervisor: Nils Hjelte
Civilingenjörsprogrammet i teknisk datavetenskap

2020





Abstract

�is project explores the possibility of lowering the barrier of entry for integrat-
ing a physics engine into distributed organization-speci�c pipelines by provid-
ing an interface for communicating over the network between domain-speci�c
tools. �e approach uses an event-driven interface, both for transferring simula-
tion models incrementally as event streams and for suggesting modi�cations of
the models.

�e proposed architecture uses a technique for storing and managing di�erent
versions of the simulation models that roughly aligns with the concept of event
sourcing and allowed for communicating updates to models by only sending in-
formation about what had changed since the older version. �e architecture also
has a simple dependency management system between models that takes ver-
sioning into account by causally ordering dependencies. �e solution allows for
multiple simultaneous client users which could support connecting collaborative
editing and visualization tools.

By implementing a prototype of the architecture it was concluded that the format
could encode models into a compact stream of small, autonomous event mes-
sages, that could be used to replicate the original structure on the receiving end,
but it was di�cult to make a good quantitative evaluation without access to a
large collection of representative example models, because the size distributions
depended on the usage.





Acknowledgements

I would like to thank everyone at Algoryx Simulation AB for le�ing me do my thesis project
with them, in particular my advisor Nils Hjelte who has given me directions and support
throughout the entire project and Martin Nilsson who provided feedback and helped proof-
read this report. I also want to thank my advisor at Umeå University, Paolo Bientinesi, for
o�ering advise along the way.





Contents

1 Introduction 1

1.1 Motivation 1

1.2 Problem Statement 2

1.3 Problem Statement Clari�cations 2

1.4 �esis Outline 3

1.5 Related Work 3

2 Background 5

2.1 Algoryx Simulation, AGX Dynamics and Brick 5

2.1.1 �e Structure of the Brick Format 5

2.2 Microservices 6

2.3 Event Sourcing and Event-Driven Architecture 6

2.4 Domain-Driven Design 7

2.5 CQRS 7

3 System Architecture 9

3.1 Prototype Scope and Delimitation 9

3.2 Architecture Design 9

3.3 Event Message Design 11

3.3.1 Data Types 12

3.3.2 Message Types 13

3.3.3 Constructors and Parameters 15

3.3.4 Encoding Numerical Values 15

3.3.5 Encoding Paths 15

3.4 Read and Write Coordination 16

3.5 Running the Simulation 16

3.6 Version Handling 18

4 Results 21

4.1 Field Size Comparison 21



4.2 Impact of Scopes 23

4.3 Comparing the .AGX �le format 25

5 Discussion 27

5.1 Resolving Con�icting Dependencies 27

5.2 Reducing Redundancy and Re�ning Version Handling 28

5.3 Demands Placed on the Physics Engine 29

5.4 Function, Constructor or Macro Arguments 29

5.5 �e Choice of Event Set 30

5.6 Evaluation of Proposed Architecture 30

5.7 Peer to Peer 31

6 Conclusions 33

6.1 Future Work 33

References 35



List of Figures

1 A visualization of the data�ow when editing models. 11

2 A visualization of the data�ow when a server is running a simulation. 17

3 A visualization of an example dependency hierarchy where two versions of
the same model appears. 18

4 Analysis of which kinds of data a set of streams consists of. 22

5 Analysis of which kinds of data a set of streams consists of, excluding the type
paths in type-entry messages. 23

6 Analysis of which kinds of data a set of streams consists of, as well as the total
size of all the type path strings. 24

7 Analysis of which kinds of data the streams for two models consist of. 24

8 Analysis of the e�ects from using scopes. 25





1 Introduction

�is report deals with exploring the possibility of lowering the barrier of entry to integrate a
physics engine into a distributed domain-speci�c pipeline.

�e simulation-related data that is communicated in such a pipeline is the information re-
quired to describe the scene that the simulation acts upon. It could include positions, veloc-
ities, shapes, masses, joints, sha�s, gears, pumps, engines and so on. �is information is all
organized and stored as simulation models. In a distributed context, there might be several
services that need access to viewing and updating these models.

�e solution that is evaluated has an event-driven architecture that uses event messages to
communicate over a network. �e technique used for storing and managing di�erent versions
of the simulation models is a version of event sourcing, which is explained in Section 2.3,
but with relatively low-level events. �e main focus of this report lies on the integration
of a tool for modeling simulation components for Algoryx’s physics engine AGX Dynamics.
�e particular tool integration examined is specialized on modeling actuator simulations, e.g.
drivetrain or hydraulics.

1.1 Motivation

Accurate physics simulations have many application areas across di�erent industries. Physics
engines such as Algoryx’s physics engine AGX Dynamics must therefore be able to integrate
well in many organization-speci�c pipelines. �is includes working together with di�erent
tools. Such tools could for example be used for se�ing up the simulation scenario or visualize
the simulation when it is running. �e challenge is creating a tool that interacts in a modular
fashion with the physics engine and can e�ciently be integrated with the rest of the simu-
lation environment. A way to lower the barrier for doing so could be to provide interfaces
that are weakly coupled with the physics engine and does not rely on the engine developers
to provide an explicit interface for every speci�c use case.

�is thesis speci�cally focuses on web-based tools and how those could more easily com-
municate with a physics engine. �e format best suited for communicating the necessary
information over the network might not be the most intuitive format for the tool to use when
speaking to the physics engine. Algoryx already had a structured tree-based format in devel-
opment which is a part of something called “Brick.” �at format could be used to interface
with tools, but sending data using that format over the network would be sub-optimal when
the data rate or amount is limited, especially for a real time application and when dealing
with large scenes.

�is project aims to explore the viability of event-driven interfaces for communicating simu-
lation models over the network.

1



1.2 Problem Statement

�is project aims to evaluate a method that uses an event-driven architecture to communicate
between interactive web-based tools or applications and a physics engine. �e purpose is in-
tegrating the tools and the engine into a distributed pipeline that involves real time physics
simulation. A structured data model is exposed to the tool while the declarative, revision-
based format is used behind the scenes for communicating over the network with the physics
engine. �e purpose for the declarative interface is mainly for a client and a server to commu-
nicate about a simulation model. �is includes the server describing the state of the simulation
models and incrementally over time sending messages that report changes that has happened
to the models’ state. It also includes the client proposing new changes to the model to the
server, based on the actions taken by the tool user.

1.3 Problem Statement Clari�cations

Here is an example on a typical work�ow: �e user tool displays some visual representation
of the simulation model to the user based on the structured data. When the user performs
an action in the tool that should change the model, such as se�ing some value, adding a
component or connecting two components, a change request is automatically sent to the
server. �e server validates the change and reports the update to the client that requested
it, but also to other clients that might use the same model. �e revision-based format is the
interface used to communicate information between the client and the server about the model.

�e goal of the interface that this thesis project produces is to be powerful enough to be able to
articulate the de�nitions for the components that the physics engine uses, down to describing
the structure of a 3D vector or what constitutes a rigid body. But in terms of these underlying
components, it should also be able to de�ne models that describe the particular setup that the
user wants to simulate.

�e solution should also include some form of version handling using a low-level variant of
event sourcing. It does not need to be fully featured, but should lay a foundation �exible
enough to allow for the possibility of adding a more advanced version handling system in
the future. �e same is true for dependency management. Dependency management means
allowing the data of one model to contain references to other models, but also includes how
this system relates to the versioning system. �ese features would be important in order for
this solution to be usable in a larger, more complex ecosystems. �e system also needs to be
scalable to large projects with many simulation models and multiple microservices (explained
in Section 2.2) having shared access to the large pool of simulation models. To achieve scala-
bility, a tool should be able to request only the subset of the data that it is interested in from
the server.

To ful�ll these requirements an event-based interface with an accompanying architecture
was proposed. A prototype was implemented to evaluate the proposed method. Analysis and
experiments with this prototype are used to investigate demands on data communication in
terms of state consistency and network load.

�e implementation is not fully featured, so the parts that were not explicitly prototyped are
only analyzed theoretically. In practice the prototype is only used with Algoryx’s hydraulics
and drivetrain systems but the general principles should be applicable to other simulation
systems as well.

2



1.4 �esis Outline

Section 1.5 below contains descriptions of previous publications and commercial solutions
that relates to this work. Chapter 2 is dedicated to background theory that aims to help
the reader understand the rest of the thesis. �is includes both a description of Algoryx’s
framework that this project works within, found in Section 2.1, and then explanations for
important concepts related to the project in the following sections. Chapter 3 describes the
proposed architecture; mostly focusing on the parts that are implemented in the prototype,
but it also mentions parts of the architecture that is beyond the scope of the prototype. Chap-
ter 4 presents quantitative results from running the prototype implementation and collecting
metrics. Chapter 5 contains some theoretical analysis of the properties of the �nal system
design and considers alternative solutions that could have been used, but for one reason or
another, were not. Chapter 6 �nally summarizes the conclusions reached in the report and
highlights areas for future work to explore.

1.5 Related Work

Caroline Desprat, Jean-Pierre Jessel and Hervé Luga from the University of Toulouse have
designed 3DEvent which is a framework that uses event sourcing for 3D web-based collab-
orative design [4]. It has many of the same challenges and goals as this project, aiming for
a �exible, loosely-coupled and non-monolithic architecture that scales well. An immediately
apparent similarity is the fact that it is dealing with a distributed event-driven architecture
that utilizes event sourcing for web-based collaborative editing tools. It also takes advantage
of the fact that the problem domain allows for e�cient encoding of the data.

It employs peer-to-peer technology (P2P), unlike this paper which instead focuses on using
a central synchronization point for validating and globally ordering the events. �e solution
in this paper mainly targets a low-latency environment. Although P2P is not in focus here
it might still be a realistic extension and P2P alternatives are discussed brie�y in Section 5.7.
Another di�erence to this thesis is that 3DEvent was not developed with physics simulation
in mind, but rather 3D geometry manipulation.

An updated version of that architecture was later proposed in a separate paper 2018 [3].

Andrzej Debski et al. [2] concluded in a 2017 article that CQRS architectures (explained in Sec-
tion 2.5) with event sourcing is horizontally scalable and provide eventual consistency. �ey
also mentioned that ‘event versioning may be solved in multiple ways’ and lacked a com-
monly accepted best practice. Although that article is not concerned with the same problem
domain as this paper, it seems to have experienced positive results using similar techniques
and architecture.

Dennis G. Brown et al. presented already 2004 [1] an event-based distribution system for a
mobile augmented reality system called BARS that works for both virtual reality and mobile
augmented reality. �e paper claims that the method works well on unreliable network con-
nections, is able to handle many types of users, works well for both low and high bandwidth
application areas, and has su�cient �exibility [1].

Outside of academia, there has been some commercial projects that tackle similar problems as
well. NVIDIA Omniverse is a non-monolithic collaborative platform from NVIDIA which
has a lot of similarities to this thesis project. Omniverse is based on Pixar’s universal scene
description (USD) and has the goal to connect tools from di�erent vendors together into one

3



real-time platform focused on 3D content creation and this includes real-time integration of
physics simulations with the PhysX physics engine. It also includes asset management, layers,
and version control [13].

Not much information about Omniverse had become accessible to the public up until right
before the end of the project. �us, NVIDIA’s solution has unfortunately not been available
for comparison with our solution within the scope of this project.

Since this paper revolves around access to and modi�cation of data, there are also parallels
that can be drawn to some databases. Event Store is a database that is speci�cally made with
event sourcing in mind [7].

Datomic is another similar database. In it, all stored data is immutable and it keeps the
complete history over previous states [15, 10]. �e fact that data stored in the database never
expires is very convenient for caching. Caching and replication can be done automatically in
peer servers [15]. �e whole database can use a persistent data structure where reads can read
the immutable data while writes only add new data without changing the old, thus writes can
be performed without coordination with reads [10].

4



2 Background

2.1 Algoryx Simulation, AGX Dynamics and Brick

�e thesis project is performed in cooperation with Algoryx Simulation AB, a company spe-
cialized in accurate engineering grade simulations, using the AGX Dynamics physics engine.
AGX Dynamics is a professional multi-purpose physics engine developed by Algoryx Simula-
tion. �e company is increasingly focusing on the development of integrated, non-monolithic,
engineering pipeline tools and end user applications. �is is critical for taking advantage of
simulation results in real-world use cases. It allows domain specialists and non-simulation
experts to be included in this work�ow.

Algoryx has many complementary modeling tools for mechanical systems. Working with
CAD models is done using Algoryx Momentum. Modeling simulation runtime environments
is done using AgxDynamics for Unity and AgxDynamics for Unreal. �is is further comple-
mented by additional customer speci�c tools and applications in a web-based environment.

AGX Dynamics has a �le format for storing the state of a simulation. �e format uses the
�le extension “.agx”. �at format is not impacted by this paper but is used as a contrasting
example. It is a serialization of raw data where the structure is known beforehand and does
not need to be encoded in the �le.

Brick is the name given to a modeling format used by Algoryx as well as a few tools that
make use of that modeling format. �e idea for Brick is to be a front-end modeling interface
for AGX Dynamics. �e tools can perform marshaling and unmarshaling to/from Brick �les
among other uses. �e tools and format are still under development.

�is project explores the possibility to add an event-based streaming interface as part of Brick
that can be used to more easily connect it to other tools.

2.1.1 �e Structure of the Brick Format

�e internal representation of Brick is divided into models. Models are trees that can store
a wide variety of structured data. Each model can contain variables that have names, data
types and values. �ey are like structure de�nitions that can optionally contain default values.
Models can also inherit the content of other models and can then choose to override inherited
values as well as adding new variables. Models can depend on other models either through
member variables having other models as types or through inheritance which could lead to a
potentially complex dependency graph.

In the future, models might also get custom constructors and associated functions (or at least
function-like macros) and could at that point aptly be likened to class de�nitions in object
oriented programming languages. However, instances of models can also have new variables
added to them dynamically.

Brick will contain many models that represent speci�c data structures used in AGX Dynamics.
�ese models could be read, and can be a part of the dependency graph, but should not be

5



edited by tool users. Other models represent the users’ simulation models and these are the
ones that a user might want to edit.

Brick’s structural model format can be stored to disk using a YAML-based format. �at format
is separate from the “.agx” �le format.

2.2 Microservices

Microservices is the idea that an application can be made up from several independent smaller
services instead of having a single large unit o�en called a “monolith”. �ere are some prob-
lems with monolithic so�ware that the microservice pa�ern is trying to address. Some di�-
culties are the fact that maintenance can be complicated, implementing new features can take
a long time, scalability is sometimes poor, deployment of new features o�en impacts the avail-
ability of the entire system, albeit temporarily, and it is very di�cult to make architectural
changes to the application [14].

Each microservice should have a single responsibility and it can be deployed, scaled, and
tested independently [11]. �is way they can be part of a larger distributed system and deliv-
ered on demand.

2.3 Event Sourcing and Event-Driven Architecture

�e idea of event sourcing is that the state of the application is stored as a series of ordered
events. Each event represents a fact that captures a change to the system’s state [2, 8]. �is
event log is the ground truth for the system. Applying a change to the state of the system is
done by creating a new event that captures the change. Event sourcing is in theory “append-
only” [8]. �is means that all data is immutable and when the user wants to change something
they simply add an event that represents that change (or a series of events depending on the
nature of the change) to the event log.

�e entire application state could be completely rebuilt from scratch by applying the events in
the event log in the order they appear. All the past states of the system could be reconstructed
by reading and applying the event log up to some speci�c point and the system could thus
query previous states of the system as well as introducing retroactive changes by injecting
event messages into the event log at an earlier point and recalculating the application state
a�er that point as if the new event had occurred. �e system could be queried as of speci�c
past states and the series of events could be replayed.

Event sourcing is versatile and has many potential application areas. Some use cases of event
sourcing is version control systems and accounting systems [8]. An advantage of event sourc-
ing is that caches of the application state can be useful even a�er the state has changed, since
the new state can be constructed by simply applying the new changes to the cache and snap-
shots of the application state can be created from the event log at any time without a�ecting
or interrupting the running application itself [8].

�e main advantage of event sourcing is the fact that past states can be reconstructed and that
the complete event log is available at all times. Reconstructing older states does however come
at a computational cost, especially if the event log is long. Some event sourced systems also
allow for recreating past events by stepping backwards through the event stream, applying
the inverse action to the events starting with the latest event. Event sourcing is good for

6



building scalable systems, with an event-driven architecture [8].

Event-driven architecture loosely means that systems communicate via event messages. It is
especially advantageous if the system is distributed and non-monolithic with few writers but
many readers.

2.4 Domain-Driven Design

�e term Domain-Driven Design (DDD) was coined by Eric Evans and is described in his book
“Domain-Driven Design: Tackling Complexity in the Heart of So�ware” [6, 12].

DDD is an approach to so�ware development that focuses the design around the processes and
behavior of the domain [2, 6]. �e design of the so�ware should center around the domain that
the so�ware models and the mental model the developers use when designing and modeling
the so�ware should closely match the mental model domain experts use to reason about the
domain [6].

2.5 CQRS

Command �ery Responsibility Segregation (CQRS) means that queries should be separate
from commands. �eries are immutable requests for data and do not have side e�ects, i.e.
they do not change the state of the queried system. Commands are requests for changing the
state [2].

CQRS works well with event sourcing and the two are o�en used together. When CQRS is
used alongside event sourcing, the commands produces events that the read view has access
to. A command might be rejected by the system in which case it has no e�ect.

�eries do not have side e�ects, they only return data. Updates can be read from several
consumers and reads can be fully lock-free.

Because CQRS splits queries from commands, both sides can be optimized independently from
each others, each focusing on the task it needs to to e�ciently, which is reading and writing,
respectively. It is possible to use di�erent kinds of databases to interface with each and they
can have independent scalability and availability for reading and writing.

CQRS is not a top-level architecture and can be applied on a limited part of a system where it
is needed [12]. It allows for the introduction of eventual consistency which is good for low-
latency systems and improves scalability, especially in systems where reads are more common
than writes [12].

7



8



3 System Architecture

A design for the system architecture is elaborated in this chapter. A simple prototype was
implemented in order to test the proposed architecture and to help highlight strengths and
weaknesses with the design.

3.1 Prototype Scope and Delimitation

Some speci�c points that the prototype implementation has to include are the following:

• De�ning a minimal set of stream operation primitives that can be used to (fully or
partially) describe the construction and incremental mutation of the simulation models
(in the structure of the existing Algoryx Brick modeling format). �is is explained in
Section 3.3.2.

• Decoding and encoding the stream into the structured Brick runtime AST representa-
tion, allowing the tool to use the structured model API and not explicitly manage the
stream.

• Load model dependencies as separate streams and piece all this information together
into a larger system. �is is useful when the actuator system model is loaded as part
of a larger simulation model, when e.g. including vehicle mechanics modeled in other
tools.

• Allow for incremental changes to be suggested by a writer client and the change be
validated and then communicated from the server to all listening clients.

• Calculate the sizes for the theoretical optimally encoded event messages in the stream
so that this can be used in the analysis.

• �e ability to compile to WebAssembly for use in the frontend application, so that the
same implementation can be reused both in the front-end and the back-end.

�e prototype implementation is limited to de�ning and editing the models which sets up
the initial state that the simulation can start running from. �e does not include streaming
data when running the simulation although the implementation is designed in such a way
that allows for future development of e�cient streaming of runtime state using the same
mechanisms.

3.2 Architecture Design

As described in Section 2.1.1, Brick’s structured format is divided into models. �e data of
these models are converted into event streams and all further changes of the model are also

9



recorded as new events, appended to the end of the stream. A single server should be respon-
sible for handling which changes are accepted to be part of the event stream, but the stream
itself can in theory be replicated to any number of clients, servers or databases and the local
copies can be stored, ready to respond to future queries. �is makes scaling out trivial and
provides horizontal scalability properties, at the very least for reading. �e event log could be
the primary format that stores the models on the disk, possibly complimented with structural
“snapshots”.

Multiple tools should be able to connect to the network simultaneously, allowing real time
collaboration. Complex con�ict resolution during concurrent editing is out of scope for this
project. For now, all write requests must synchronize in a single server which can simply
reject changes that con�icts with the current state of the model.

�e important thing is that the most recent versions are known to the server responsible for
appending new events to the stream, so that no con�icting versions are created. Subscription
can be used to keep all replicas up to date. When an update to one of the models occurs the
new events can be transported to all nodes in the network that subscribes to that stream. �at
means that consistency is achieved eventually, but there is nothing that guarantees that the
most recent version exists in all replicas at any given time.

In the receiving end of the event stream the stream is used to reconstruct the tree-based in-
ternal representation of the system which is kept track of in addition to storing the event log
itself. If the model depends on other models and the client has not yet learned about those
models, it requests those as well and receives those as separate streams. Before ever commu-
nicating with the server, the client would still have local knowledge about a base library of
core models, so that those never needs to be sent explicitly.

Each model has have an accompanying version number that is included when the model is
referred to. �at way, the receiver knows if its local version of a model is out of date. In the
prototype implementation the version number is simply the number of events in the stream.
Since events are append-only, the number of events should be strictly increasing. However,
it is very likely that this versioning system would not be the best idea for a production-ready
system. �is is discussed further in Sections 5.1 and 5.2.

In the client end, the resulting tree a�er decoding the event stream is what is exposed by the
API that faces the rest of the user application. �is API provides read-access to the structured
data which allows for a simpler mental representation that the user application can reason
about. However, instead of directly modifying the local copy of the tree in the client, the user
requests changes from the server. In this system design, it has been decided that requests are
to be encoded in the same format as events. Even so, these are only supposed to be seen as
commands, operations or preliminary events and are not at that point yet part of the event
stream.

�e changes that the user requests in the tool are automatically encoded into preliminary
events and these are sent to the server which then validates and synchronizes the new infor-
mation, updates the event log and updates its own data tree. It then reports the changes to all
listeners, which probably includes the client that requested the change. Only then is the tree
representation in the client updated.

In Figure 1 is a visual depiction of the process described above. Remember that requests and
queries/subscriptions are completely separate from one another. A subscriber to a model does
not have to be the one the sends the change request. All subscribers get all event messages
regardless of who requested it. A client that wants a version of the stream, but does not
want to subscribe and get future updates can make a one-o� query for a speci�c version. If

10



Figure 1: A visualization of the data�ow when editing models. �e arrows show what a�ects
what. A request in the client is sent to the server which evaluates the change and
produces one or more event and updates its local structural representation of the
system which is used in the validation process. When an even is added to the event
log in the server, it is automatically sent to all subscribers of the model but copies
of the event log can also be sent on request to any non-subscriber. When an event
is received in a client, it is stored and the client’s local tree structure is updated.

the client already has some version of the model locally, it can request to only get the event
messages since that version.

Having the server responsible for reporting all changes means that the server decides the
global ordering of events. �is makes sure that consistency is obtained even if multiple si-
multaneous writers are allowed.

All connections between the server and the listener streams need to use TCP or some at least
some method that ensures ordering and no data loss since every event is important and so is
the order between them.

3.3 Event Message Design

�ere are many ways to design the event messages in the event log. Alternatives to the
approach presented here are mentioned in Section 5.5.

�e layout of the event messages used in the proposed architecture are as follows. �e event
log consists of discrete messages where each message describes one event. �e event message
starts with an event type ID which speci�es what type of event the message represents. �is,
in turn, determines what data the rest of the message should contain. Both declaring type
schemata and assigning values to an existing schema use the same format but the two use
cases might use a di�erent subset of the operations. A small data format is a priority to avoid
data transfer becoming a bo�leneck.

�e format is a modeling format, but it is also used as a serialization format. Serialization
means converting data into a serial stream of data that is suitable for transportation over a
network. In this report it refers to the action of converting from the structured brick format

11



into an event stream. Deserialization in the context of this report is the inverse action of
serialization which restores it to the structured brick format. Of course, if the event log is
the primary representation of the simulation models, then converting to that format from the
structured format would be more rare than doing the inverse. Events that are added to an
event stream would become a part of the serial stream before having an e�ect that is re�ected
in the internal structured format. Nonetheless, the act of interpreting an event message and
a�ecting the data structures accordingly is still referred to as deserialization in this report.

3.3.1 Data Types

�e exact set of data types is not that important for the theoretical evaluation of this approach,
but it does nonetheless in�uence the outcome from the quantitative analysis and is therefore
documented here. A set of very general and versatile data types has been chosen for this
prototype. Below is a list of data types that the �elds in the event messages can consist of.
In Section 3.3.2, the event message layout is described in terms of these. It is worth noting
that the �elds were not encoded exactly as described here in the real prototype. Because
the prototype had a limited development time and resources it is partially simpli�ed. For
example, paths are encoded as strings under the hood, rather than using the more compact
format described in 3.3.5. But the encoding described here is the theoretical format which
can realistically be implemented and the paper takes the di�erences into consideration when
calculating and comparing the theoretical and actual demands on the data communication.

• bool A Boolean value

• real A double precision �oating point value

• utf-8_string A null-terminated utf-8 string. �e Brick format allows assigning
expressions as values to variables. �is might include referencing other variables or
performing arithmetic operations. �ese expression values are currently also encoded
as this kind of string when put into event messages rather than using some more com-
plex encoding. �is behavior is chosen due to simplicity for the prototype and not
because it was determined to necessarily be the best solution.

• ident_string A string that can encode the character set that identi�ers can consist
of. Since the names for variables, namespaces and models are fully ASCII-compatible in
this system, we do not need unicode support. A small optimization would be to use the
bit that goes unused in the ASCII format as a terminator instead of a null character. �at
would save one byte per identi�er string. Of course, if unicode support were desired,
than this type of string could just as well be encoded identically to the utf-8 string.

• s_varint A signed variable size integer. How it is encoded is explained in Sec-
tion 3.3.4.

• u_varint An unsigned variable size integer. How it is encoded is explained in Sec-
tion 3.3.4.

• path A valid existing path in the tree structure of the data. How it is encoded is
explained in Section 3.3.5.

• scalar_param Can be s_varint, real, bool or utf-8_string. Which it
should be interpreted as must be deduced from the context.

12



• param Similar to scalar_param, but has even more potential values, such as being
a reference (a path to a di�erent variable) or being empty (zero bytes). Which it should
be interpreted as must be deduced from the context. As explained in Section 3.3.3 there
are four special constructors that does not implicitly know the type of the values they
are creating, so the parameters for those four constructors includes the type ID that
they represent.

• param_variant �is is the same as param except it is used in contexts where the
types for the four special constructors mentioned in Section 3.3.3 can be deduced, so
the type IDs does not need to be included.

3.3.2 Message Types

�e following list shows the message types that are present in the prototype implementation.
�ese messages are not only used as events, but are both used as events in the event stream
and as requests for new changes. �ey will generally be referred to as “events” or “operations”
here, but should be understood as referring to either events or requests. For each message type
in the list below, there is a short description followed by a visualization of the layout. �e
visualization shows how the message type is serialized in terms of the data types described
in the list of section 3.3.1. �e �eld called “opcode” which is present in every message type is
the event type ID, unique for every type of event.

Note that the names of the operations as wri�en here are not wri�en in a format that neces-
sarily �ts either as events in an event log or as commands with proposed changes. A be�er
event naming convention is discussed in Section 5.5.

• variable Create a new variable with a name and a type and give it a value based on a
constructor and input parameters to that constructor.

opcode location name constructor ID value
u_varint path ident_string u_varint param

• data Sets the value of a variable based on a constructor. �is operation does the same
thing as the “variable” operation except creating and naming the variable. Instead, it
assumes that the variable already exists.

opcode location constructor ID value
u_varint path u_varint param_variant

• literal Sets a value just like the “data” operation, but without specifying the construc-
tor in the message. Instead the type is inferred from the speci�ed location of the variable
(which has to already exist beforehand) and only scalar types are supported (int, real,
bool or string). �is event type is a variant of the event type “data” but using one less
varint. �e reason why it cannot encode as many data types as “data” is that the type
of the value has to be deducible from the location, but just knowing the type does not
help to know what constructor to use if constructor support were fully implemented,
and a value of a child type should be assignable to a variable of its parent type.

opcode location value
u_varint path scalar_param

• delete Remove a variable from the model.
opcode location
u_varint path

13



• type-entry Add a type to the type table and add the type’s constructor(s) to the con-
structor table. As mentioned, constructors are not fully implemented, so each type
has exactly one constructor (except generic types, those lack constructors, but the only
generic type in the prototype is List). �ese tables keep track of the IDs for types and
constructors used in all the other event messages. �e type path is an ident_string
rather than a path because making module paths part of the path encoding system de-
scribed in Section 3.3.5 would add a lot of complexity and constraints to the design.
�ere might be some clever way to compress this �eld, but for now it is represented by
a string.

opcode type paths revision
u_varint ident_string u_varint

• composite-type-entry Just like type-entry, but for composite types i.e. specializa-
tions of generic/template types. �ere is only one generic type at the moment and that
is List. So to create a list containing a speci�c data type you create a composite-type-
entry that speci�es the type that links the generic type List to the inner type. �is
should in the future work with other generic types as well, once that is implemented.

opcode data type ID 1 data type ID 2
u_varint u_varint u_varint

• origin An operation message that appears exactly once per model and speci�es
whether or not the model inherits from another model or not and if so, which one.
�e type ID parameter is set to -1 if the model doesn’t inherit, so the data type ID
varint has to be signed.

opcode data type ID
u_varint s_varint

• scope-push �is operation is usually paired with a “scope-pop” message and together
they introduce statefulness; they a�ect how the messages between them are interpreted.
Every operation between these two, (except operations that handle the creation of type
entries,) operate within a speci�ed scope. �e scope is a path into somewhere in the
model which means that all paths are relative to that place, rather than the model root.
�is is just used for size optimization. �ey allow event messages between them to not
have to specify the full paths. �e “scope-push”-operation could be seen as an operation
that moves around a cursor or marker that remembers a stack trace of all the places it
has been to and “scope-pop” could be seen as the operation that tells that marker to pop
an element from the stack and return to that place.

opcode location
u_varint path

• scope-pop �is operation is explained above.
opcode
u_varint

• create A combination of the “variable”-operation and “scope-push”-operation. Just
like the “scope-push”-operation, it needs to be paired with a “scope-pop”. �is is an
example of a higher level operation that is introduced to increase stream compaction.
It is included in the prototype because it was anticipated that creating a variable, then
immediately doing things inside that variable’s scope, would be a common use case.

opcode location name constructor ID value
u_varint path ident_string u_varint param

14



3.3.3 Constructors and Parameters

For each stream, the encoder and decoder must keep track of which types the model depends
on and an ID number is assigned to each one, and are stored in a table. A separate table stores
all constructors for these types and these are assigned separate IDs, but the table links each
constructor to the type it constructs.

�e prototype has a very rudimentary constructor handling implemented. Each type only has
one constructor. Constructors for scalar types takes the data type they are as an argument
while the ones for model data types take no arguments and sets default values for all members.

�e ability to create constructors that take arguments and perform special tasks is an inter-
esting idea that could be implemented, but is not part of the prototype implementation nor is
it de�ned more precisely in this architecture design. If this more complex constructor behav-
ior were implemented it would probably also be combined with the ability to create custom
functions (or at least function-like macros) and evoking them. �e design of the parameter
layout in the event messages would have to account for more complex arguments for this to
work. More on this in Section 5.4.

�at said, beyond making the event streams more compact at the cost of adding complexity
to the system, having functions could also help with making the user’s intent documented
more explicitly in the event stream.

Four special constructors that are part of the prototype are the constructors for constructing
references, expressions, null values and unde�ned values. �ey are special because they are
not connected to speci�c types. �e same constructor could in these cases create values of
di�erent types in di�erent contexts. To �gure out which type they are, there are two strate-
gies. �e �rst is to a�ach a type ID along with the constructor arguments. �e second is to
infer the type based on the variable it is targeting.

3.3.4 Encoding Numerical Values

�e prototype implementation uses dynamically sized integers rather than specifying several
data types representing di�erent �xed-sized integers. More speci�cally, it uses variable length
integers in the LEB128 format. �e �rst bit per byte in the encoded number is dedicated to
mark whether that byte is the �nal byte of the number or not and the remaining seven bits per
byte encodes the actual value [9]. �is has advantages and disadvantages. It is however very
good when small values are common and it reduces complexity since it prevents over�ow.
It also guarantees to only be one byte when used as a unique identi�cation token for sets of
items fewer than 129. �is means that smaller numbers take less space than larger ones.

3.3.5 Encoding Paths

A path de�nes a location in a model schema that contains some variable. �ese paths could
be arbitrarily long since the data structures can be arbitrarily nested in the data tree. A path
could be encoded as a string “foo.bar.baz” but this would be ine�cient with respect to
the encoding size. Because of this, the data members of a type structure should be ordered,
(e.g. by their insertion order,) so that they could be accessed as a number. �en a path might
become “3.1.2” rather than “foo.bar.baz”. �is example would be read as “the second
member of the �rst member of the third member” and could be encoded pre�y compactly. �e
ideal would be one variable length integer per node in the path, and each one of those would
typically be a single byte in length, but one complication is that there needs to be an indicator

15



for when the reader has reached the end of the path. �e most simple method for doing so,
without needing to add a byte-sized terminator character at the end of the path with some
reserved bit-pa�ern, would be to dedicate one bit per variable length integer for indicating
whether it represents the very �nal segment in the path or not (or alternatively, the very �nal
byte in the entire path). �is avoids having to insert more than one variable sized integer per
segment in the path.

Variable length integers in the LEB128 format guarantees to only take up one byte when used
as a unique identi�cation token for sets of 128 items or less but they still can support larger
sets than that. �is makes variable size integers a good �t for this purpose since the number
of members in a structure usually is less than that, but the format also allows a larger quantity
if so would be necessary.

Reserving an extra bit per segment as described earlier would limit this to only �t 64 unique
numbers in the �rst byte, rather than 128. Still, that is typically more than the number of
members in a structure and the �rst 64 × 128 = 8192 members are still representable with at
most 2 bytes each.

�ere are however ways to improve the encoding size slightly without too much modi�cation.
One observation is that among the two reserved bits in each byte, (the bit that marks whether
or not this byte is the �nal byte in the variable size integer and the bit that marks whether
or not this is the �nal segment in the path,) there are only three combinations that are used
out of the four possible: either the byte is or is not the �nal in the variable size integer and if
it is the �nal one it either is or is not the �nal integer in the path. �ere is no case where a
byte that is not the �nal byte in an integer would be marked as the �nal byte of the path. So,
recognizing this redundancy, it is possible to reduce the bit-pa�ern for one of these scenarios
into only a single bit. Which scenario to minimize depends on what scenario is deemed the
most bene�cial to reduce, but in either case it is a very small optimization and might add more
complexity that what it is worth.

Regardless of that issue, one consequence of using variable length integers to specify a mem-
ber in the theoretical (yet unlikely) case where the data type has hundreds or thousands of
members is that the most commonly accessed members can strategically be placed earlier in
the ordering in order to get the most compact representation.

3.4 Read and Write Coordination

�e proposed architecture would allow for multiple simultaneous writers, without locking
write access, and handling con�icts by rejecting the con�icting command. However, events
within a scope, (i.e. between a push and a pop of a scope,) must be seen as a transactional
operation. It is necessary to prevent race conditions such as the case where someone sends a
command message, but the scope is changed by a di�erent user just before the message takes
e�ect, resulting in it happening in the wrong scope. �is is not implemented in the prototype.

Reads can be fully asynchronous.

3.5 Running the Simulation

�e ability to run the simulation from the server is not included in the prototype implemen-
tation, but will still be accounted for in the design.

16



Figure 2: A visualization of the data�ow when a server is running a simulation. �e arrows
show what a�ects what. �e model is feed into AGX Dynamics. �e physics engine
runs the simulation and outputs events when values are changed. �ese change
noti�cations are �ltered based on the client’s preferences and the data is sent to
the clients that subscribe to it. �e client may or may not record the event log for
future reference, otherwise the older events can be discarded. �ey may or may
not also keep an updated copy of their structure. �e processed information from
the subscriptions then informs what information should be relayed to the user.

�e simulation could run locally on the client’s machine or on any other node of the network.
Having a dedicated server that runs simulations might be good if several clients want to
witness the same simulation play out in real-time.

If the simulation is performed on a server, the data needs to be streamed to the tool. �ese
changes are not permanent modi�cations of the models, so they are not part of the event
log, but they may still be represented as events. Pu�ing di�erent kinds of data on di�erent
channels would be preferable since it would allow speci�c tools to only subscribe to the chan-
nels that interest it. For example, a rigid body simulation tool would probably want to know
the transformations for every object and that might be enough for some simple visualization
tools. However, it is also possible that the collision points and velocities are interesting to
some visualization tools so having the choice of which variables to observe allows for more
�exible customization and avoids unnecessary network load. Since most values are updated
every frame it is important to not transmit data in vain. It is conceivable to imagine a sys-
tem where the amount of data transmi�ed from the server during real-time streaming of the
physics simulation is minimized even further by allowing the client to specify update frequen-
cies for each channel individually and also have the ability to request that for some channels
changes are only reported when a value changes with a signi�cant enough amount.

In Figure 2 is a visualization of what happens when a server is running a simulation. If the
client chooses to save the simulation log they can later go back and step through the simula-
tion, inspecting what happened, without involving the server.

17



3.6 Version Handling

A simple version handling system was implemented in the prototype, e�ectively implement-
ing causal ordering between the models’ di�erent versions.

As an example of a scenario where version handling is necessary, consider a model Foo that
contains a variable of type Bar. In the scenario, there are two active user applications in-
volved, one that is editing Foo and one that is editing Bar. If the user of one client application
changed the model Bar by deleting one of its variables, then this change can be synchronized
with the server, but the other client that is working on Foo does not immediately know about
the change and will at �rst still believe that Bar contains the deleted variable.

If that client then tries to set the value of the deleted member of Bar in its local instance of
Bar within Foo, then that might seem to work locally, but if the operations from both of the
clients are allowed by the server to become part of the event streams, then any future client
that tries to reconstruct Foo from its event stream will have to know that an older version of
Bar should be used, otherwise it will not arrive at the same result.

�e easiest method for solving this is to simply include a version number for each dependency
when they are added, and there could be some method for Foo to update any dependency at
any time the client chooses. By including version numbers in the event stream when referring
to other models it is possible to reconstruct a model tree from an event stream by keeping the
appropriate versions of referenced models in memory. �ere are some problems with this,
however.

If Foo version 1 depends on Bar version 1 which in turn depends on Baz version 1 and Foo
version 2 then gets an additional dependency Fubar version 1 that in turn depend on Baz
version 2, then Foo must keep both version 1 and 2 of Baz in memory at the same time. An
illustration of this scenario is found in Figure 3. �is might be an okay approach, but it does
add complexity and support for having multiple versions in memory at the same time is not
part of the prototype implementation, but it is discussed further in Section 5.1.

Figure 3: A visualization of an example dependency hierarchy where two versions of the
same model appears. �e arrow in a lighter shade of gray was added in version 2
of Foo which gave cause of the potential con�ict. �is is only a problem if two
versions of a model is not allowed in the same client at the same time.

In the prototype, every client or server always only has one version of a dependency in mem-
ory at any given time. It is then necessary to �nd a solution that can work with that limitation.

Since all decisions are made on a single server, that server is the reference for what the latest

18



versions are. Clients are not automatically noti�ed about changes to a model unless they
are explicitly subscribed to that model’s event stream. If they are, then they will eventually
receive all the changes to that model. �e client and the server has one type table per stream
that keeps track of which models the stream depends on and which version those models are
presumed to be.

Recall that one property of event sourcing is that the model can be reconstructed perfectly
from only knowing the event stream(s). If the stream has one dependency, but the client then
updates the version of that dependency locally, or if the server has a newer version, then
subsequent changes to the model could be ambiguous. If the client makes a request to change
any part of the model that would produce di�erent results depending on the version of some
dependency, then the server checks if the latest version of that dependency is in the type table
for the stream. If the version in the table is older, a message urging an update is inserted into
the model’s event stream before the requested change can be considered. �is is, for now,
done with another “type-table” message with the new version number. Doing that overrides
any older version present in the table.

When a newer version is needed in a client but the client already has an older version of
the dependency in memory, it only requests the changes to the event log since the version
that it already has knowledge of from the server, rather than receiving the entire log and get
redundant information.

�e prototype does not handle the scenario where a stream requests an older version of a
model than the one currently in memory and thus the prototype does not handle the modi�ed
version of the problematic scenario mentioned earlier, where Fubar had an older version of
Baz than the version that Bar had, rather than having a newer one. �at is an important
functionality to have in a production-ready version of the system, since reconstructing any
structure from its event stream might involve temporarily using older versions of models
early on in the stream. Once again, alternative solutions are discussed in Section 5.1.

19



20



4 Results

By implementing and using the prototype, it was concluded that the format proposed could
be used to serialize and deserialize the Brick runtime AST, per the de�nition of serialization
and deserialization described in Section 3.3. �is conclusion was reached by performing the
sequence encode-decode-encode and checking that the two encoded streams were identical.
Correctness tests were also performed by connecting several clients that subscribed to the
same model and see that changes suggested by one client propagated to the rest. Tests were
also performed to see that the simple dependency handling system worked for cases that the
prototype was built to handle.

It is di�cult to test the performance of the event streaming architecture since it would greatly
depend on how the interface is used in a real world context. Nonetheless, a few examples were
created in order to test the prototype implementation.

4.1 Field Size Comparison

In Figure 4 is a breakdown of the event stream for an example model called “Examples.
Vehicle.DriveTrain.DriveTrainWithDifferential”. It was created by taking
all event messages needed to encode the entire model and taking the sum of all �elds on all
the event messages divided into categories. �is gives a quick overview of what kind of data
the bulk of the event stream consists of.

�e summary consists of event messages from both the stream to the model itself, but also
all streams of the models that the �rst model depends on. In other words, it includes all data
necessary to create the model from scratch, without prior knowledge about any data types
other than the primary data types such as scalar types and the generic list type.

In real-world usage, it would be more common for the client to already have local knowledge
about a base library of core models and so only high-level models would have to be transferred.

In Figure 4, the slices labeled “opcodes,” “locations,” “names,” “values” and “type paths” rep-
resents the size of the �elds with those same names in the event messages, (but in singular,)
as they are described in Section 3.3.2. �e slice labeled “other” represents the rest of the data
in the the event messages. �is includes the type and constructor IDs as well as the revision
of type-entries.

Two versions of the breakdown was made. One where location paths was encoded using the
path encoding described in Section 3.3.5 and one using ASCII strings as path encoding. �e
la�er has a larger size of the locations, but the values increase slightly in size as well. �at is
because the value �eld can be a reference to another variable, which is then represented by a
path to that model.

One thing that sticks out is that the type paths take up a proportionally large portion of the
total size. �e slice labeled “type paths” only represents the size of the �eld “type path” in
the event message type “type-entry”. �e reason why it represents such a large portion of the

21



opcodes (334 b)

locations (230 b)

values
(1026 b)

names
(1353 b)

other (306 b)

type paths
(3366 b)

opcodes (334 b)

locations
(2415 b)

values
(1420 b)

names
(1353 b)

other (306 b)

type paths
(3366 b)

Encoded Paths

(6554 bytes total)

String Paths

(7780 bytes total)

Figure 4: Analysis of which kinds of data the set of streams needed to construct the model
“Examples.Vehicle.DriveTrain.DriveTrainWithDifferential”
from scratch consists of, shown with and without path encoding.

total size is that it is encoded as an ASCII string, rather than using the same encoding as the
variable paths.

�e problem of encoding type paths is more di�cult than encoding variable paths since vari-
ables have well de�ned positions and orders within the model, clearly de�ned by the event
stream. Since the types do not have a clear order and is not part of any event stream it would
be much trickier to encode these. But since they represent such a large portion of the total
size, trying to solve that issue might be a good idea.

Perhaps it can be solved by introducing a global index for each model that is stored in a table
that is persistently managed by the server. Or perhaps there could be have a special kind of
model that stores information about namespaces.

Note that the names of models in the example �les can be pre�y long in some cases. For exam-
ple, “Examples.Vehicle.DriveTrain.DriveTrainWithDifferential” is the
path of the top level model, and that string is 54 characters long. It is worth stressing that
the set of models in the example, might not be representative of how an average model might
look. If models had fewer unique dependencies, then �elds of this type would be fewer and
might have a smaller impact. Disregarding the type paths completely, Figure 4 would instead
look like Figure 5 which shows that names and values are the most dominant �eld types, as
well as locations if they are not encoded well.

Another important fact is that there would be more data transferred other than just the event
streams. For example, when an event stream is read and a new dependency is introduced, if
the client does not have a local copy of that model, or if the local copy is a too old version, then
the client must make a request for obtaining the event stream for that model. �e most notable
�eld in that request message is, once again, the type path. Any other �elds in the data request
can be omi�ed from this analysis. �e total size of all unique type paths in the dependency
graph for “Examples.Vehicle.DriveTrain.DriveTrainWithDifferential” is
2233 bytes, but of course, there might be smarter ways to address types in this context as well,
which would reduce this size. Figure 6 shows that type paths in the event stream and in model

22



opcodes (334 b)

locations (230 b)

values
(1026 b)

names
(1353 b)

other (306 b)

opcodes (334 b)

locations
(2415 b)

values
(1420 b)

names
(1353 b)

other (306 b)

Encoded Paths

(3188 bytes total)

String Paths

(4475 bytes total)

Figure 5: Analysis of which kinds of data the set of streams needed to construct the model
“Examples.Vehicle.DriveTrain.DriveTrainWithDifferential”
from scratch consists of, excluding the encoding of the type paths in type-entry
event messages. �e result is shown with and without path encoding.

requests together make up about 60% of the total data. �ere are many potential ways of re-
ducing the size of this data.

Another note about the distributions between types of �elds is that string �elds become much
rarer when instantiating and se�ing values in a structure with an already de�ned schema,
rather than adding new variables. In Figure 7 (a) is a comparison of the data �elds for a stream
that de�nes a model with 100 new integer variables with set default values of one byte each.
In contrast, Figure 7 (b) creates a single variable which is an instance of the model de�ned in
(a) and then overrides all 100 integer values. In the la�er case, the names do not need to be
re-de�ned. It is also easy to imagine a scenario where the values were much larger than one
byte each. If the values had instead been double-precision �oating point numbers the value
�elds would have been 8 times as large and would have taken up 77.5% of the stream, all else
being equal. �at means that the data overhead that describes structure, rather than the actual
raw data, would be signi�cantly smaller, proportionally, than in the case of (a). �e stream
for (b) is dependent upon the stream (a), so (a) must be fetched before (b) can be constructed
from its event stream. But this only needs to be done once per client. If several models depend
on the same version of model (a) or older, no new information about (a) needs to be fetched
from the server when those new models are reconstructed from its event stream.

4.2 Impact of Scopes

In Figure 8 is a comparison from three di�erent sets of streams. �e �rst, Figure 8 (a), being
“Examples.Vehicle.DriveTrain.DriveTrainWithDifferential” showed
very li�le di�erence between using and not using scopes. �is is probably due to that model
graph being divided into 50 models, each already operating within its own model scope.
Adding scope-management within models did not make much of a di�erence, since most
of the models probably only set values that are not nested.

23



opcodes (334 b)

locations (230 b)

values
(1026 b)

names
(1353 b)

other (306 b)

type paths
(3366 b)

model
request type paths

(2233 b)

Figure 6: Analysis of which kinds of data the set of streams needed to construct the model
“Examples.Vehicle.DriveTrain.DriveTrainWithDifferential”
from scratch consists of, as well as the total size of all the type path strings needed
for all the event stream requests.

opcodes
(101 b)

locations
(100 b)

values
(100 b)

names
(490 b)

other (1 b)

opcodes
(104 b)

locations
(101 b)

values
(100 b)

names (3 b)
other (3 b)

type paths (21 b)

(a) (b)

Figure 7: Analysis of which kinds of data the streams for two models consist of. Model (a)
is a model with 100 integer variables with their values set, and (b) is a model that
contains a single variable which is an instance of (a) but with all 100 integers over-
ridden.

24



�e second, Figure 8 (b), is the models used in Figure 7. It showed a slightly larger relative
di�erence, since the two models had separate areas of responsibilities. One de�ned the struc-
ture and default values and one initialized the instance with particular values. �at means
that the value initialization model set the values within the scope of the other model. If such
a separation between structure schemata and the instance with custom values is a common
use case, then (b) might be a more realistic scenario. �e di�erence might even be larger, if
the schema was larger or more nested. To test an extreme case, a third case, Figure 8 (c), was
also added. It has by far the largest contrast. It was created by placing a mode within a node
within a node (etc.) 100 nodes of depth and then adding 100 variables within the most nested
node. �is is not the most realistic scenario, but it shows that scopes to have a large impact
when pushed.

Never
Using Scopes

Using Scopes
0

5

10

15

6,560 6,554

1,223 1,124

16,282

1,581

Si
ze

[k
ilo

by
te

s]

(a)
(b)
(c)

Never
Using Scopes

Using Scopes
0

0.2

0.4

0.6

0.8

1

1.2
1,223

1,124

Si
ze

[k
ilo

by
te

s]

case (b) isolated:

Figure 8: Analysis of the e�ects from using scopes.

4.3 Comparing the .AGX �le format

Algoryx’s “.agx” �le format encodes the “DriveTrainWithDifferentials” model used
in most of the examples of this chapter is 48 kB. �e proposed event-based format encodes
the same model graph with 6554 bytes. �e comparison is not a completely fair one, since the
two formats have di�erent purposes. �e “.agx” format is a serialization format, rather than
a modeling format. It also stores all the values for every instance of a model even the that
are assigned their default values. Another di�erence is that there is information stored in the
event logs that is not included in an “.agx” �le. �e event logs encode the names and types of
all variables and set both the default values and overridden values.

An event stream could be made to encode only the information present in an “.agx” �le, if the
other information existed in separate models that that stream depended on. �e fact that it is
easy to break an event log �le into a base �le and a patch �le, where the la�er only contains
the updates from one version to another is also a bene�t of the new format.

25



In a scenario where the model changes over time, these changes as well as the order they
were made in would be traceable by reading the event log. In this comparison though, the
model is just build up from scratch without any meaningful changes over time encoded. But
it is still worth noting that the new format is smaller than the “.agx” format yet, which might
be a testimony to its success at remaining compact.

26



5 Discussion

�is chapter contains discussions about problems and limitations in the design and brings up
some potential other approaches that could have been used instead. �ese approaches might
in some cases trade one limitation for another and are not necessarily strictly be�er than the
approach used. In other cases there are some obvious �aws in the prototype implementation
that has to be �xed if a production ready system is desired.

5.1 Resolving Con�icting Dependencies

�is section revolves around the problem where something is depending on con�icting ver-
sions of the same dependency in di�erent parts of the dependency graph.

Such version con�icts can easily arise when several models are involved in the same de-
pendency graph and can be updated independently. As mentioned in Section 3.6, there are
problems with the approach to only have a single version of each model in memory at any
given time, as is the case in the prototype. �ere are several ways to resolve this problem.

�e �rst is to have several versions of a model in memory, but only as many as is required at
the time. When a newer version that is not already in memory is required, the closest older
version that is in memory is cloned. �at clone is then updated to the new version by applying
the relevant parts of the event stream.

If vX is the new version number and instances is the set of all instances of the target
model that are stored locally, then this pseudocode describes the algorithm:

if(model with version vX is not in instances) {
older ← instances.GetSubsetWhere(version < vX);
if(older is empty) {

modelX ← new Model(empty);
} else {

tmp ← older.GetInstanceWithHighestVersion();
modelX ← new Model(clone of tmp);

}
modelX.UpdateTo(vX);
instances.add(modelX);

}
return instances.GetInstanceWithVersion(vX);

Old versions of a model can be deleted when no other models depend on it.

�is approach introduces some redundant calculations, but at least the client can reuse the
event stream that it has already received, rather than fetching it again from the server.

Another idea for handling dependency con�icts is to keep every version of the model in mem-
ory all the time. �is avoids having to reconstruct old versions that had already been con-

27



structed once, but it requires more memory. If every time a new event message is added counts
as a separate version, this approach is almost certainly not feasible. In Section 5.2 are some
ideas for other methods of assigning version numbers. �is reduces the number of versions
that needs to be taken into consideration by the dependency graph. Fewer versions at play
means fewer versions that could need to be in memory at the same time which could make
this approach more viable.

Yet another approach is to store all versions, but take advantage of the fact that most of the
structure probably stays the same through several versions of the model. �is can be done by
using persistent data structures. Persistent data structures always preserve previous versions
when modi�ed. �at way access can still be granted to those previous versions [5]. Persistent
data structures can for example be implemented e�ciently using hash array mapped tries
(HAMT) which is done to implement persistent collections for the standard libraries of some
programming languages such as Clojure and Scala [16].

5.2 Reducing Redundancy and Re�ning Version Handling

�e event log could easily include redundant event messages, especially when the user is
tweaking a value, changing it multiple times to di�erent values in quick succession. It might
be able to optimize it away by not sending every change to the server as soon as it happens,
but instead wait until it becomes necessary.

�is is similar to the approach chosen by one of the papers mentioned as related work for this
paper [3]. In that architecture, the user would edit a “ghost” of the object until happy with the
change at which point the change is commi�ed [3]. �at could work here as well, and could
probably be used in some capacity in addition to any other suggestion brought forward in
this section, but relying too heavily on this mechanic would loose some of the bene�ts with
having multiple clients be able to see the changes in real time or close to real time.

Another problem with that solution emerges when the user wants to run the simulation on
the server. If the user has unpublished local changes at that point, then the server would
not know about them. �us, that data would not be fed into the physics engine. To prevent
that, sending the changes to the server becomes necessary. It is likely that the user wants
to run the simulation ever so o�en while tweaking the values which means that the user is
forced to push the changes to the event stream before every test run. Each intermediate value
is then re�ected in the version history, making the event history contain redundancies and
subsequently, the process of recreating the model from the history has to perform redundant
steps. �is also increases the network load when sending models to other clients.

Another problem is that the version handling in the prototype design is dependent on the
exact number of events in the event log at any given time. Since the log is append-only, this
gives a unique ID-number for every version, but it also means that every message introduces
a new version. �is is a problem for several reasons. First o�, it prevents the server from
removing the redundant messages from the event stream since the exact number of messages
is important. Of course, just changing the version history would be bad anyway, since it
would remove information. It would ruin the undo-history and all the earlier versions would
no longer be reconstructable, which is a requirement for resolving dependencies. Another
problem with having every message produce a new version is that it ampli�es the depen-
dency con�ict problem explained in Section 5.1 since there are more potential versions in the
dependency graph that can con�ict with each others.

28



�ere are several potential solutions that can solve all of these problems. �e potential so-
lution that appears strongest is to keep a faithful version of the event history while the user
is editing the model, stored as a separate “unpublished” event log. In this log, the server can
allow the user to undo and redo as much as they would like. �is version could also be used
when the user wants to run the simulation, but it would not be exposed to the dependency
graph until the user is happy with the changes and decides to “publish” it to the real event log.
At that point, instead of transferring the actual version history to the published event log, a
new more compact version of the history from the last published version to the new one is
generated and that more compact set of events is added to the event log. Not until then can
the new model version be used as a dependency in other published models. �e development
event stream and the published event stream are basically two separate streams in this sce-
nario. �is circumvents the reconstructability problem by only promising that the published
versions can be reconstructed, but still allows for undo-history in the development stream.

Other alternatives also exist such as having separate major versions where each can have
their own minor version and each new major version changes the history that came before
it into the most compact possible form when it is created. A third alternative solution could
be to keep the version history as it is on the server, but create optimized versions of that
history whenever a speci�c version of the model is requested by a client. �e most obvious
problem with both of those approaches is that a client that requests one version cannot infer
older versions by reading parts of that stream. �ese two approaches also does not address
the problem with storage redundancies on the server.

5.3 Demands Placed on the Physics Engine

As can be seen from Figure 2, the architecture from running the simulation requires the
physics engine to emit events. �is is one of the largest demands that this approach puts
on the physics engine itself.

If running the simulation is ignored, as is the case for the prototype, than the purpose of all
the event streams is to provide a graph that describes the initial state of the world. �is data
can then be converted into a series of commands that puts the physics engine into the correct
initial state. �is can be done externally without changing anything about the physics engine
itself.

However, if the state of the world when running the simulation should be transmi�ed back
to the client using the same event stream format, then there has to be some method for the
physics engine to spit out data to the server that it can use to construct new event messages.
�is might not be a huge problem if the physics engine is developed alongside the event in-
terface, or if there is some method to listen to changes and then manually convert them into
events, but if the physics engine is an externally developed so�ware and lacks such function-
ality, then the developers of the event interface is limited to the functionality present in the
physics engine.

5.4 Function, Constructor or Macro Arguments

�e ability to group several operations together into a single operation and then evoking that
operation instead of each operation separately could decrease network load as well. Since this
thesis aims to create an interface that is general, it might be a good idea to allow the creation

29



of such operation bundles by the user application. One specialization of such a functionality
could be specialized constructors for a model. �e constructors could take data as arguments
to customize the outcome. Whether or not behavior such as �ow control could be injected into
such a constructor or whether it would only be a predetermined series of event messages with
customized values remains to be decided. Exploring the possibilities of such functionality is
out of scope for this thesis, but the idea might have potential and the rami�cations of using
it might be signi�cant.

5.5 �e Choice of Event Set

�e set of operations used in this architecture for commands, as well as making up the log of
events, shares many similarities to events in event sourcing. However, event sourcing is based
on domain-driven design. To follow the principles of domain-driven design, the events should
be modeled a�er the behavior of the domain. �e current set of operations might be seen as
too low-level, and too CRUD-like to be regarded as an ideal set for use in event sourcing. It is
unknown if this choice of event set is an anti-pa�ern that may have any negative e�ect on the
future extensibility or maintainability, or if it is a decent approach for the data-driven system
it is a part of. It can be argued that the domain for the event sourcing is “data modeling” rather
than the high level domains of the end users. With that in mind, perhaps the interface is at
a suitable level of abstraction for that purpose. Further research might be needed to draw a
de�nitive conclusion in that regard.

Regarding the naming of the event messages, it might have been a good idea to use more
names that be�er re�ect the fact that the operations are representations of completed events.
�is could have been realized as names such as “variable-created”, “value-updated” and “de-
pendency-added” instead of “variable”, “data” and “type-entry”. Furthermore, when used
as requests they should be in imperative, i.e. “create-variable”, “update-value” and “add-
dependency”. �is could result in a more data-driven mental model as well as a more se-
mantically correct description of what the messages represent.

�en there is the question about whether or not using small, discrete operation-like events is
a good idea to begin with. An alternative could be to make each event message a partial graph
that contains only the di�erences from the main model graph. �at way, each modi�cation
can contain arbitrarily large changes, but still be able to specify only the subset of the data it
is changing. Encoding what information to merge might take up as much space as the event
information does or more, but it is possible that the mental model becomes more manageable
or that some optimizations can be made. It is also possible that more optimizations can be
made when each message is larger. Using this graph-based approach, fewer event messages
would be necessary, and if a version handling system such as one of those mentioned in
Section 5.2 are used, meaning that there is a need for calculating compact versions of the
stream, then that might even allow for each version to be merged into a single message.

5.6 Evaluation of Proposed Architecture

It was concluded that the format proposed could be used to serialize and deserialize the Brick
runtime AST. �at means that the client gets full access to the Brick format. �is tree format
is very �exible and can de�ne components of the physics engine which means that as long
as the structures in the physics engine has Brick equivalents, it is possible to create tools that

30



interacts with them. �e drivetrain models were loaded into the client without being provided
an explicit interface for working with drivetrain components.

A single server is responsible for deciding the global ordering of events. �is makes sure that
consistency is obtained even if multiple simultaneous writers are allowed. �us, collaborative
tools would be possible. A more robust con�ict resolution system might be desirable for that
use case, but that is out of scope for this report. Multiple readers of models is trivial since all
model data in the commi�ed model versions are immutable.

�is also provides scalability by adding servers and multicasting new information among
them.

�ere are aspects that are di�cult to analyze the proposed architecture from within the scope
of this project. Maintainability, fault tolerance and extensibility are some such aspects. How
easy it is to develop and set up tools that communicate through this interface is also di�cult
to test without having more resources available. Even the aspects that were analyzed, would
have produced more conclusive results if they were backed up by tests from a larger library
of relevant models, something which was not available.

5.7 Peer to Peer

�is thesis has mostly assumed a central synchronization server for the models through which
all changes are validated and ordered to provide a consistent global ordering. �is is a reason-
able assumption for most use cases, but peer-to-peer synchronization might also be feasible.

�ere are some problems with trying to achieve this. First and foremost, the system is sup-
posed to work on a set of models where the sum of the size of all models is large. When
using a central server, the server is assumed to be large enough to hold every model. Write
access to the system has a single point of failure, but regular backups can be made to prevent
permanent data loss and multiple read-servers can prevent read-access downtime.

Creating a P2P solution has di�erent problems that depend on which assumptions can be
made.

If none of the peers in the peer-to-peer network are assumed to have a large enough storage
capacity to reasonably be expected to be able to store every model, there is no one place
where all models exist. �en it is harder to make complete backups. But a larger problem
is consensus; if there is no central server that decides the global ordering, then how can
consensus be reached about which changes are to be accepted by the system and in which
order they should occur?

Another concerns is whether peers be assumed to run according to the speci�cation; that
none of them are corrupt or deliberately sabotaging.

Yet another concern is whether every node in the P2P network can be assumed to constantly
have a near 100% uptime. If so, it would not ma�er if a model was only replicated in a few
nodes of the network, since those nodes would always be able to pass on the model to any
other node that requests it. It would also make consensus simpler, since every node could
reasonably wait for a response from every other node.

�ere is no one solution that �ts all needs.

31



32



6 Conclusions

�is thesis paper has shown how an event-driven architecture in which physics simulation
models can be serialized into a stream of events, could be used to coordinate the authoring of
such models using editing tools provided as microservices.

�e paper also highlight some di�culties that needs to be overcome when implementing
such a system. Speci�cally dependency management and in particular handling versioning
of dependencies.

Experiments showed that explicit strings made up the majority of the event message size.
Experiments were also conducted to measure the e�ect of trying to limit the length of paths
using scopes. �e conclusion was that it had a greater e�ect on models that made changes
to scopes that were deeply nested in the structure than to those that did not. �is mostly
happened in cases where schemata containing the structure was placed in models separate
from the model that was se�ing the values for instances of that structure. �is scoping system
did however add some complexity to the system, introducing the requirement of treating some
groups of events as a single transaction, but might also open up the possibility of creating
complex function-like operations in the future.

�e proposed architecture did not require locking and had really good horizontal scalability
properties since all data is immutable, but only eventual consistency could be guaranteed on
low-latency systems since updates would not be able to propagate instantly.

In the proposed architecture, models could depend on other models in a causal dependency
graph, explicitly speci�ed by the models themselves. A proposal where the event log was sep-
arated into a commi�ed version and a work-in-progress version was suggested as a solution
to avoid unreasonably long editing histories and too many versions to coordinate.

It was di�cult to draw conclusions from the quantitative testing without having a good idea
of how the interface would be used in practice. A large library of relevant models could have
helped this analysis. Similarly, it is di�cult to measure how successful the proposed archi-
tecture is without having an alternative implementations with corresponding data models to
compare it to.

6.1 Future Work

Many potential topics for future work are brought up in Chapter 5. One examples of an inter-
esting topic to explore is maintainability and extensibility of such a system, e.g. by looking at
the possibility of adding, removing or changing some event types or make updates in general
without breaking existing tool integration and models.

Another topic is to actually implementing one of the more robust version handling systems
and using that versioning system together with a tool that makes use of it, to see how well it
holds up does in practice.

33



Testing what impact functions or constructors would have on the system would also be a
next step. �ese might also be able to introduce more high level events on the event stream
and allow a more domain-driven approach, but might also introduce new problems such as
introducing having to handle di�erent versions of a function as well.

Commands are in the current design �re-and-forget. It might be a good idea to add some error
feedback mechanisms.

More rigorous testing in general would be good to make. Unfortunately, we did not have
time to to a proper tool integration and most tests were performed from a simple terminal
interface. Proper end-to-end testing with multiple users would be valuable.

34



References

[1] Dennis G Brown, Simon J Julier, Yohan Baillot, Mark A Livingston, and Lawrence J
Rosenblum. Event-based data distribution for mobile augmented reality and virtual en-
vironments. Presence: Teleoperators & Virtual Environments, 13(2):211–221, 2004.

[2] Andrzej Debski, Bartlomiej Szczepanik, Maciej Malawski, Stefan Spahr, and Dirk
Muthig. In search for a scalable & reactive architecture of a cloud application: Cqrs
and event sourcing case study. IEEE So�ware, 2017.

[3] Caroline Desprat, Benoı̂t Caudesaygues, Hervé Luga, and Jean-Pierre Jessel. Loosely
coupled approach for web-based collaborative 3d design. 11th ACM International Con-
ference on Distributed Event-Based Systems (DEBS 2017), 19 June 2017 - 23 June 2017
(Barcelona, Spain)., 2018.

[4] Caroline Desprat, Jean-Pierre Jessel, and Hervé Luga. 3devent: A framework using
event-sourcing approach for 3d web-based collaborative design in p2p. In Proceedings
of the 21st International Conference on Web3D Technology, Web3D ’16, page 73–76, New
York, NY, USA, 2016. Association for Computing Machinery.

[5] James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan. Making
data structures persistent. In Proceedings of the eighteenth annual ACM symposium on
�eory of computing, pages 109–121, 1986.

[6] Eric Evans. Domain-driven design: tackling complexity in the heart of so�ware. Addison-
Wesley Professional, 2004.

[7] Event Store. Event store - event sourcing database, 2020. avaliable online:
h�ps://eventstore.com (accessed 12/05/2020).

[8] Martin Fowler. Event sourcing. Online, Dec, 2005. avaliable online:
h�ps://martinfowler.com/eaaDev/EventSourcing.html (accessed 17/03/2020).

[9] Free Standards Group. Dwarf debugging information format speci�cation version
3.0, December 2005. avaliable online: h�p://dwarfstd.org/doc/Dwarf3.pdf (accessed
13/05/2020).

[10] Alexander Kiel. Datomic-a functional database. 2013.

[11] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert. Microservices. IEEE So�-
ware, 35(3):96–100, 2018.

[12] Sco� Mille� and Nick Tune. Pa�erns, principles, and practices of domain-driven design.
John Wiley & Sons, 2015.

[13] NVIDIA. Nvidia omniverse™, 2019. avaliable online:
h�ps://developer.nvidia.com/nvidia-omniverse (accessed 12/05/2020).

35



[14] Vinicius Feitosa Pacheco. Microservice Pa�erns and Best Practices: Explore pa�erns like
CQRS and event sourcing to create scalable, maintainable, and testable microservices. Packt
Publishing Ltd, 2018.

[15] Tobias Stauber. Immutable databases at the example of datomic. 2016.

[16] Michael J Steindorfer and Jurgen J Vinju. Optimizing hash-array mapped tries for fast
and lean immutable jvm collections. In Proceedings of the 2015 ACM SIGPLAN Interna-
tional Conference on Object-Oriented Programming, Systems, Languages, and Applications,
pages 783–800, 2015.

36



37




	Introduction
	Motivation
	Problem Statement
	Problem Statement Clarifications
	Thesis Outline
	Related Work

	Background
	Algoryx Simulation, AGX Dynamics and Brick
	The Structure of the Brick Format

	Microservices
	Event Sourcing and Event-Driven Architecture
	Domain-Driven Design
	CQRS

	System Architecture
	Prototype Scope and Delimitation
	Architecture Design
	Event Message Design
	Data Types
	Message Types
	Constructors and Parameters
	Encoding Numerical Values
	Encoding Paths

	Read and Write Coordination
	Running the Simulation
	Version Handling

	Results
	Field Size Comparison
	Impact of Scopes
	Comparing the .AGX file format

	Discussion
	Resolving Conflicting Dependencies
	Reducing Redundancy and Refining Version Handling
	Demands Placed on the Physics Engine
	Function, Constructor or Macro Arguments
	The Choice of Event Set
	Evaluation of Proposed Architecture
	Peer to Peer

	Conclusions
	Future Work

	References

