
IN DEGREE PROJECT ELECTRICAL ENGINEERING, SECOND
CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2016

Simulation in the Control
Loop
Control and Collision Detection for Collaborative
Robots

MARTIN TÖRNQVIST

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING

Abstract

Control and simulation are two areas heavily utilized in robotics research,
and simulation is often used as a way to test and optimize control algo-
rithms. Some controllers are even able to perform simulations, as is the
case with ABB’s virtual controller. Despite many similarities in the dynam-
ics of model based controllers and physics simulation, using a simulation to
perform dynamics calculations for controllers remains relatively uncharted
territory. This report presents a general simulation-based controller that in-
tegrates simulation into every part of the control loop: from motion planning
to model-based control and collision detection. The controller is implemented
and tested on the ABB Yumi collaborative robot.

1

Contents

1 Introduction 5
1.1 Algoryx Simulation . 5
1.2 Problem Statement . 5

2 Conventions 6

3 Background 7
3.1 Previous Work . 7
3.2 Co-Robotics . 7
3.3 Physics Simulations . 7

3.3.1 The Spook Solver . 9
3.4 Model-Based Control (MBC) . 9

3.4.1 Computed Torque Control . 10
3.5 Motion Planning Methods . 10

3.5.1 Off-line and On-line Planning . 11
3.5.2 Path and Trajectory Planning . 11

4 Theory: Simulation In-The-Loop 12
4.1 Computing the Force . 13
4.2 Path Planning for Robot Manipulators . 13
4.3 Collision Detection . 13

5 Implementation 13
5.1 The Functional Mock-up Interface (FMI) 14
5.2 FMUs . 14

5.2.1 Motion Planner . 14
5.2.2 Control simulation . 16
5.2.3 Robot . 17

5.3 The Algorithm: Putting it All Together 19
5.4 Robot Models . 20

5.4.1 Simple Sphere . 20
5.4.2 ABB Yumi . 20

6 Results 22
6.1 Test Scenarios . 22

6.1.1 Step Test . 23
6.1.2 Offline Step Test . 23
6.1.3 Collisions . 23
6.1.4 Hand Guiding . 23

6.2 Graphs . 23

7 Conclusion 24
7.1 Result Discussion . 24

2

7.2 Limitations . 25
7.3 Future Work . 25

8 Acknowledgements 26

3

List of Figures

1 A SCARA robot showing the joint positions and end effector [7]. 6
2 The two types of constraints used as joints in robot simulations [12]. . . . 8
3 Block diagram of computed torque control [21]. 11
4 A simple schematic showing the different modules used in the controller.

u refers to forces and q to positions. 12
5 Schematic view of off-line planning. 15
6 Schematic view of on-line planning. 16
7 A visualized representation of a 1 degree of freedom robot perform a single

step of the algorithm in section 5.3. 18
8 A simple sphere simulation. 20
9 ABB Yumi [31]. 22

4

1 Introduction

This report aims at bringing two areas in robotics closer together: simulation and control.
While simulation have long been used to try different control techniques, incorporating a
complete physics simulation in the actual control loop is a fairly new concept. The reason
this is an interesting subject, is the fact that constraint-based multibody simulations
solve the same dynamic problem as model-based controllers do.

There has been some research on using simulation in the loop [1]–[3], but the focus
tends to be on automatically deriving controllers, rather than running the simulation
as part of the control paradigm. Another close subject are the virtual controllers em-
ployed by ABB, that utilize the fact that the controller solves the dynamic problem to
create simulations using the same code that controls the robot [4]. While this obviously
works for developing successful controllers, it does not allow for the robot to interact
dynamically with its environment.

This report is divided into a few sections. Section 2 defines some terms and concepts
used throughout the report; section 3 gives some background information on physics
simulations and model-based control; section 4 describes the thoughts behind the simu-
lation in the loop-approach, and presents a mathematical foundation; section 5 explains
how the controller was implemented in this project, and how it was verified using a few
models and test scenarios; section 6 presents the results that was found when running
the tests; and finally, section 7 concludes the report and gives some thoughts on how the
work can be continued in the future.

1.1 Algoryx Simulation

The project was conducted at Algoryx Simulation AB in Ume̊a, Sweden; a physics
simulation company that was founded in 2007 as a spin-out from Ume̊a University.
The company has about 20 employees, and their products include the AgX Dynamics
physics engine, the Algodoo 2D educational engine, and Dynamics for SpaceClaim which
integrates CAD-modelling with real-time dynamics. Their physics engine AgX Dynamics
is utilizing the Spook method [5] as its solver.

1.2 Problem Statement

The goal of the project is to develop a generalized tool for simulating human-robot
interaction, including a model-based controller, a motion planner and the possibility of
simulating a wide variety of collisions. The tool will be built using the AgX Dynamics
physics engine, and will be fully modular, where the controller, the path planner and the
simulated robot are all easily replaced and improved upon. The tool should be general
and stable enough to allow the robot simulation to be replaced by a real robot, although
implementing this is beyond the scope of this thesis.

5

Figure 1: A SCARA robot showing the joint positions and end effector [7].

2 Conventions

To avoid ambiguity and unnecessary repetition, below is a list of definitions used in this
report. These definitions will override any meaning the words may originally have held,
unless explicitly stated otherwise.

Robot arm A kinematic chain of links connected by joints. Each joint allows movement
in a single degree of freedom, and can be rotational or translational (see figure 1).

Joint Space The set of joint positions used to describe the state of the robot arm,
usually described as q = [q1, q2, . . . , qn]T .

Configuration Space The set of configurations that are reachable by the robot arm.

End Effector The tool attached to the tip of the last link in the kinematic chain (see
figure 1). Some common attachments are grippers, spray nozzles and welders [6]. The
position of the end effector is sometimes called the tool center point (TCP).

Rotational and Translational Characteristics When describing joint characteristics
such as positions, velocities and torques, rotational and translational characteristics
are treated in the exact same way. These characteristics will therefore collectively be
named by their translational equivalent, i.e. position refers to angular or translational
position, velocity refers to angular or translational velocity, and force refers to torque or
translational force.

6

3 Background

This section will give some background to the different topics covered later in the report:
physics simulations in general and the Spook solver in particular; model-based control;
and motion planning. Furthermore, it gives a quick overview of the state of the research
in the area of simulation in the loop control, and a short introduction to co-robotics.

3.1 Previous Work

There has been some research on using simulation in the loop [1]–[3], but the focus tends
to be on automatically deriving controllers, rather than running the simulation as part
of the control paradigm. Another close subject are the virtual controllers employed by
ABB, that utilize the fact that the controller solves the dynamic problem to create sim-
ulations using the same code that controls the robot [4]. While this obviously works for
developing successful controllers, it does not allow for the robot to interact dynamically
with its environment.

3.2 Co-Robotics

Co-robotics is the field in robotics dealing with collaborative, co-operative and compliant
robots. What characterizes a collaborative robot is the fact that it’s designed to collab-
orate either with humans, or co-operate with other robots. This sets high standards for
safety and adaptability, as a robot must never hurt a human being [8], while still being
able to solve complex tasks. One solution to this problem is to build compliant robots,
which are light and weak enough that they won’t be able to cause much pain, even if
they were to try.

Nonetheless, collision detection is another important part of co-robotic design, as a
collision detected early may avoid harm both to the human, and, more likely, to the
robot.

3.3 Physics Simulations

Physics simulations are conducted by physics engines, which can be used to simulate
various physical systems. Physics engines are typically classified into two categories: real-
time and scientific. Although there is some overlap, real-time engines aim at simulating
a system in real-time, for use in e.g. games and training simulators, while scientific
engines value accuracy and precision over speed.

In robotics, the main goal of simulating is to solve the forward dynamics problem:
determining the motion of bodies from the forces acting upon them [9]. This can be
done by solving a set of differential equations [10]:

M(q)q̈ + c(q, q̇) = f(q) +Gλ (3.1)

7

(a) A hinge constraint. (b) A prismatic constraint.

Figure 2: The two types of constraints used as joints in robot simulations [12].

where

q : n× 1 vector of generalized coordinates1

M(q) : n× n inertia matrix containing masses and moments of in-
ertia of the different bodies

c(q, q̇) : n×1 vector containing inertial forces that are nonlinear func-
tions of the velocities (e.g. centrifugal and coriolis forces)

f(q) : n× 1 vector containing external forces (e.g. gravity)
λ : k × 1 vector containing constraint forces
G : n × k Jacobian matrix where each column represents the

direction of a constraint (see below).

Solving this is the goal of most physics engines, and there have been countless hours of
research devoted to it. The system is modeled as a set of bodies, which are attached to
eachother or the world with constraints. A constraint is a restriction on the movement
of a certain body, and an ideal constraint completely removes one or more degrees of
freedom (DOFs) from a body, allowing the object to move only in the remaining DOF.
In 3D space there are 6 DOFs, 3 translational and 3 rotational. Constraining e.g. all the
translational DOFs would create a ball joint, allowing free rotation around a fixed point.
In robotics, most movement can be described by two types of joints, each removing all
but one degree of freedom: the hinge and the prismatic constraint. The hinge allows
rotation around a single axis, while the prismatic allows movement in a straight line (see
figure 2). The SCARA robot in figure 1 has 3 hinges and 1 prismatic joint.

The force at which a constraint is enforced is determined by its violation: the displace-
ment from a certain state of rest. This can be compared to a simple mass-spring-damping
system, F = −kx− cẋ, where k is the spring constant, c is the damping coefficient and
x is the displacement [13].

1A set of coordinates that describe the system fully, e.g. joint positions for a robot manipulator [11].

8

3.3.1 The Spook Solver

This project uses the AgX Dynamics physics engine, developed by Algoryx Simulation
AB. It uses the Spook solver described in [5] to solve and discretize the dynamics problem
(3.1). The resulting velocities when applying the constraint forces λk to a system is given
by

vk = vk−1 +M−1Gk
Tλk + hM−1fe (3.2)

where

vk : vector of joint velocities at time step k
M : mass matrix containing masses and moment of inertias
Gk : jacobian matrix containing information about the constraints
fe : vector containing external forces
h : the time step

.
Correspondingly, when forcing a constraint to a certain velocity, the resulting force

applied to the constraint is given by

λk =
(
Gk

TM−1Gk + Σ
)−1

Gk (vk − vk−1) (3.3)

where

Σ : regularization matrix

.
These equations can be derived from (3.1) [14], but this is non-trivial and beyond the

scope of this thesis. Further reading is available in [5].

3.4 Model-Based Control (MBC)

Model-based control (MBC) is a collective name given to control techniques where the
controller takes into account an explicit description of the system to be controlled. For
complex, multivariate systems this is often superior to using regular PID control, since
effects such as gravity and inertia can be compensated for directly and are not dependent
on the robustness of the PID [15]. An important special case of MBC is model predictive
control (MPC), where the controller takes into account not only the current configuration
of the system, but predicted future ones as well [16]. This is common in large process
industries and power plants [17].

There is lots of literature on how to apply MBC on a robot arm, including [18], [19]
and [20]. I will focus on a method known as computed torque control, which was first
described in [21].

9

3.4.1 Computed Torque Control

Computed torque control is a type of motion-based control, which is built on the dynamic
model of a robot arm

M(q)q̈ + C(q, q̇)q̇ + g(q) = τ (3.4)

where

q : vector of joint positions
M(q) : inertia matrix for the configuration given by q
C(q, q̇) : matrix containing centrifugal and Coriolis forces
g(q) : vector containing gravitational forces
τ : vector containing external forces applied by actuators

and the goal becomes to compute the external forces τ needed to get to a desired state
[qd, q̇d, q̈]

T . Comparing this equation with equation (3.1), one realizes that by modelling
the actuator forces as a single degree of freedom constraint (hinge or prismatic)1, the
models become identical. This indicates that the computed torque control, and a physics
simulation, solve similar problems. This is the basic idea behind this thesis, and section
4 will discuss how simulations and controllers can be incorporated into a single control
loop.

The control law for computed torque control is given by

τ = M(q)
[
q̈d +Kv

˙̃q +Kpq̃
]

+ C(q, q̇)q̇ + g(q) (3.5)

where

qd : vector of desired joint desired positions

and the position error q̃ = qd − q, which yields the following closed-loop equation:

τ = M(qd − q̃)Kpq̃ +M(qd − q̃)Kv
˙̃q +M(q)q̈d + C(q, q̇)q̇ + g(q) (3.6)

. The loop is further visualized in figure 3.

3.5 Motion Planning Methods

Motion planning is the process of generating a set of motions that will take the robot
from one state to another, while avoiding collisions and staying within its configuration
space [22]. This can be accomplished in a wide variety of ways, including using potential
fields [23], inverse kinematics, probabilistic methods [24] and much more. What method
to use depends on many factors, including the type of robot to be controlled (autonomous
ground vehicle, robot arm, drone, etc.), its application (does it need to interact with its

1see section 3.3

10

Figure 3: Block diagram of computed torque control [21].

environment? Is it subject to much noise? Does it need to avoid objects?) and what
the controller looks like (position based, velocity based, PID, MBC1, feed forward part).
These methods can be classified into various categories, and this report will focus on
two of those: off-line vs on-line, and position vs velocity. Further reading about motion
planning in general is available in e.g. [25] and [26].

3.5.1 Off-line and On-line Planning

The main difference between off-line and on-line planning is during what phase the plan-
ning takes place. Off-line planners compute the complete trajectory before the motion
is started, while on-line planners plan the route during movement. This gives on-line
planners the ability to adapt the trajectory to new information, such as unforeseen ob-
stacles, something which is generally desirable. On the other hand, as on-line planning
requires continually solving the motion planning problem, it is much more computation-
ally demanding, and finding an optimal route is often impossible [22].

The differences between the two strategies has led to them being utilized for different
applications. Off-line planning is generally used for repeatable tasks in a static envi-
ronment, such as mounting and some pick-and-place applications. On the other hand,
on-line planners are used when the environment is dynamic, or where the goal is not
known beforehand [27].

3.5.2 Path and Trajectory Planning

While it is sometimes sufficient only to specify the desired end-point of a motion, or a
limited set of points ensuring a collision-free path, when dealing with robots it is often

1Model-Based Control, see section 3.4

11

Path Planner Control Simulation Real Robot
qd u q

q

Figure 4: A simple schematic showing the different modules used in the controller. u
refers to forces and q to positions.

desirable to specify at which velocities this path should be followed, to have complete
control over the motion. This is especially important when the robot is made up of a
dynamic chain, such as a multiple degrees of freedom robot arm (such as the SCARA
robot in figure 1. An example of a controller that utilizes a complete trajectory is the
computed torque controller described in 3.4.1 (see equation (3.5) in particular). Planning
the velocity may also be important when avoiding moving obstacles [28].

A planner providing both position and velocity information is sometimes called a
trajectory planner, while its simpler counterpart dealing only with position is known as
a path planner. In discrete applications, a trajectory planner may be realized as a path
planner with positions given at each time step. These positions can then be used to
calculate velocity as well by interpolation, i.e.

vk =
qk − qk−1

h
(3.7)

.

4 Theory: Simulation In-The-Loop

This section handles the theoretical description and reasoning behind the simulation
in-the-loop approach. The idea is to run a real-time simulation alongside the actual
system to be controlled, where the simulation will continually exchange information
with its real world counterpart. Using this in a controller will allow the controller to
take into account complex dynamics of the system, along with any environment aspects
that the simulation have access to, such as external forces (e.g. gravity) and objects to
be gripped or avoided. By comparing output from the real system with the simulated
one, deviations, such as collisions, can be detected and reacted to. This is discussed in
more detail in section 4.3.

In this report, the systems to be controlled will be limited to single- or multi-joint
kinematic chains (e.g. robot arms), where the controlled variable will be the forces of
the motors, and the feedback will be the positions (see fig. 4).

The system to be controlled will be referred to as the ”real robot”, the simulation to
be used for control will be referred to as the ”control simulation”, and the model of the
real-world system as the ”control robot”.

12

4.1 Computing the Force

As stated in section 3.3.1, the Spook solver calculates forces to counteract any violation in
speed and position specified by the constraints. By specifying these violations directly,
the solver can therefore be forced to calculate the forces required to reach a certain
position or velocity. By using the mass matrix M of the system and the jacobian G
of the constraints, the force λ can be calculated from the velocity using (3.3). A short
description of the solver is presented in section 3.3.1, and for the interested reader a
detailed description can be found in [5].

4.2 Path Planning for Robot Manipulators

Path planning for robot arms involves the process of converting the trajectory of the
end-effector to a set of joint angles that the controller can handle. This can be done in
a variety of ways, where inverse kinematics is probably the most well-known approach.
Inverse kinematics uses the kinematic model of the robot, including lengths of the links
and axes of rotations to recursively calculate the joint angles, given a position in space
of the tip of the last link (in comparison, forward kinematics is used to calculate the
position of the end effector from the specified joint angles). This, however, often requires
finding the jacobian matrix of the system and calculating its inverse for every time step,
something that can be difficult to achieve in real-time for many degrees of freedom (more
than 6) [29].

The method used in this approach is in some ways much simpler: Use the same model
as in the control simulation to force the end effector to the desired position, and read
the values of the joint angles required to get there. This guarantees a physically viable
route, even though it is in no way optimized.

4.3 Collision Detection

Collision detection is the process of getting the robot to realize if it has collided with
another object. While this is a simple process for humans that have access to millions
of pressure sensors in the skin, a robot that has a joint position sensor as its only input
will find this problem less than trivial.

The approach attempted in this project utilizes the difference in expected and actual
movement to predict whether or not an unforeseen collision was experienced.

5 Implementation

To implement the controller described in section 4, an algorithm was devised. The
algorithm breaks down the method into a few steps, which are repeated each time step,
and it is described in section 5.3. To realize the algorithm, however, the problem of how
to simultaneously run several simulations and exchange information between them had
to be solved. The solution was the Functional Mock-up Interface (FMI) standard, which
is described in section 5.1

13

5.1 The Functional Mock-up Interface (FMI)

The Functional Mock-up Interface is a tool for connecting simulations, controllers and
other functions. Each module, called a Functional Mock-up Unit (FMU), has a set of
inputs and outputs, where the output of one FMU can be bound to the input of another.
Such a pair of input-output is called a binding. A separate file, called a master, is used
to specify when the different events are to occur, e.g. in what order the simulations
should step, and when the bindings should exchange information. A detailed description
of the FMI standard can be found in [30].

5.2 FMUs

There are four FMUs present in this solution: The path planner, the control simulation,
the [robot simulation] and the controller. In this implementation, the control simulation
and the robot are both simulations; the controller is a simple interface; and the path
planner have been implemented in two different ways.

5.2.1 Motion Planner

The motion planner is in charge of providing the controller with joint positions at each
time step. These positions can be calculated either before any motion has begun (off-line
planning), or during motion (on-line planning). Advantages and disadvantages of these
strategies are described in section 3.5.1. Below is a description of how these planning
strategies were implemented in this project.

The motion planners control the trajectory of the simulation by moving the end ef-
fector. This movement is generated in such a way that it accelerates and decelerates by
a constant acceleration for the same amount of time. Furthermore a maximum velocity
can be set, at which point the velocity will remain the same until it is time to decelerate.
This is realized using algorithm 1

14

O -line Planning

M0 M4

path:

To controllerqd,1

qd,2

qd,3

qd,4 To controller

To controller

To controller

t = 1

t = 2

t = 3

t = 4

Figure 5: Schematic view of off-line planning.

Algorithm 1: Moving the end effector

Input: Desired end position vector pd

Data: Current velocity vector v0
Current position vector p0

Acceleration a
Maximum velocity vmax

Time step h
Result: Next velocity vector v1
p̃ = pd − p0

d1 = ‖p̃‖ /* Distance between current position and desired */

d2 =
v2
0

2∗a /* Distance required to reach 0 velocity */

if d1 ≤ d2 then
v1 ← p̃(v0 − a · h) /* Decelerate */

else
if v0 ≤ vmax then

v1 ← p̃(v0 + a · h) /* Accelerate */

else
v1 ← v0 /* Hold the same speed */

end

end
return v1

Off-line Planning The off-line planner utilizes the same model as the control simulation,
and generates its trajectory before sending any information to the controller. The motion
is generated by forcing the end effector to move in a certain trajectory, and storing the
positions of the joints at each time step in a list Q = [qd,1, qd,2, . . . , qd,k, . . . , qd,n]. When
the controller asks for a new set of joint positions, the motion planner simply pops the
next value in the list and hands it over (see figure 5).

15

M0

qd,1

To controller

On-line Planning

M1

qd,2

To controller

M2

To controller

qd,3

M3

To controller

qd,4

M4

Figure 6: Schematic view of on-line planning.

On-line Planning: Planning-In-The-Loop The on-line planner is realized by running
the motion planning simulation simultaneously with the controller, and sending its po-
sition at each time step (see figure 6). By synchronizing its state with the control
simulation

5.2.2 Control simulation

Control simulation state at timestep k: Ck
The control simulation holds the model of the real robot to be controlled, and its

mission is to compute the torque required to move from the true robot’s current state,
to the next state as presented by the motion planner. The model should be as detailed as
possible, and include any obstacles, loads and dynamics present in the actual situation.

Moving from one state to the next is realized simply by setting the motors to the
desired velocity, stepping the simulation and reading the torques (see algorithm 2).
There is, however, no guarantee that the actual robot will respond to the torques in the
exact same way as the simulated one, and a difference in position ∆qk = qrk − qck will be
present for each time step k. Unless handled, this ∆qk will accumulate, and eventually
result in instability, as the control robot will calculate torques with a completely different
state as its starting point.

To deal with this problem, a feedback part must be added to the controller. This
feedback consists of two steps:

1. Roll back the entire state of the simulation one step, from Ck to Ck−1

2. Perform a step according to algorithm 2, using the measured positions of the real
robot joints, qrk, as its input, resulting in a new state C′k.

Using C′k as the starting point for the next step will ensure that errors will not accumulate,
and result in a more stable controller. The process is described in section 5.3 and

16

visualized in figure 7

Algorithm 2: controlSim.step() function

Input: Desired position for each joint qd
Data: Current position for each joint q0

Time step h
Result: Torques applied by the actuators τ
for i← 1 to number of joints do

vd =
qd,i−q0,i

h
actuators[i].setVelocity(vd);

end
Update dynamics according to (3.3)
for i← 1 to number of joints do

τi ← actuators[i].getForce()
end
return τ

5.2.3 Robot

The robot FMU holds information about the robot itself. Ideally this would be a real
robot, being fed forces from the controller, and returning position measurements. In this
project, however, the robot will consist of another model, identical to the one used in
the control simulation. An algorithmic description of the step is shown in algorithm 3.

For testing controller robustness, noise was added to the measurement output, and
the mass of the links was altered slightly (see section 6.1).

Algorithm 3: realSim.step() function

Input: Forces to be applied to the motors τ
Result: Positions of the motors after updating the dynamics q
for i← 1 to number of joints do

actuators[i].setTorque(τi);
end
Update dynamics according to
for i← 1 to number of joints do

qi ← actuators[i].getPosition()
end
return q

17

Motion Planner

qd,1

Control Simulation

Update

Dynamics

Real Robot

Update

Dynamics

�1

Control Simulation

q1

Slightly di�erent

outcome

Update

Dynamics

Load

State

C0

Control Simulation Motion Planner

R0C0M0

M1 C1 R1

C1

C0 M1

C1' M1'

C1

q1 Load

State

C1'

1

2

3

4

6

7 8 9

Simulation During 1 Time Step

5

Figure 7: A visualized representation of a 1 degree of freedom robot perform a single
step of the algorithm in section 5.3.

18

5.3 The Algorithm: Putting it All Together

Combining the FMUs described above yields the complete controller algorithm. This
algorithm can be described as a set of steps that are repeated each time step:

1. (For on-line planning only) Step the motion planner simulation and use the joint
position qd as the next desired position vector.

2. Transfer the desired position vector to the control simulation.

3. Step the control simulation with the desired position vector qd according to algo-
rithm 2.

4. Transfer the vector of forces τ to the real robot.

5. Apply the forces to the real robot actuators.

6. Transfer the resulting position vector q to the control simulation.

7. Step back the control simulation to its starting state.

8. Step the control simulation with the real robot position vector q according to
algorithm 2.

9. (For on-line planning only) Load the control simulations state into the motion
planner.

.
Utilizing equations (3.7), (3.3) and (3.2), the algorithm can also be described in math-

ematical terms:

vck =
qmk − qck−1

h
(5.1)

λck =
(
Gc

k
TM−1Gc

k + Σ
)−1

Gc
k

(
vck − vck−1

)
(5.2)

vrk = vrk−1 +M−1Gr
k
Tλck + hM−1fe (5.3)

qrk = qrk−1 + hvrk (5.4)

xck,rollback = xck (5.5)

vck,rollback =
qrk − qck−1

h
(5.6)

19

λck,rollback =
(
Gc

k
TM−1Gc

k + Σ
)−1

Gc
k

(
vck,rollback − vck−1

)
(5.7)

, where the upper index describes which model is referred to: c is the control model, m
is the motion planner model, and r is the real robot model. The lower index refers to
discrete time. Below is a table describing the various equations, and how they relate to
the algorithm:

5.4 Robot Models

One of the beauties of this type of controller is its ability to be implemented on many
different kinds of applications, as long as you have its physical model. The simulations
will be in the presence of a uniform gravitational field in the negative z-direction, with
a constant acceleration of 9.82 m/s2.

5.4.1 Simple Sphere

One of the most basic models to control is that of a sphere attached to a translational
axis. In this scenario, the sphere is attached to the z-axis. The specifications of the
sphere used in this report are:

Mass : 1 kg
Radius : 0.1 m

The motion planner is programmed to accelerate and decelerate with 0.1 m/s2, and
reach a maximum velocity of 1 m/s.

Z

Figure 8: A simple sphere simulation.

5.4.2 ABB Yumi

Yumi is ABB’s first collaborative robot, and features 2 arms with 7 degrees of freedom
each (see figure 9. To model it, its CAD-files were downloaded from [31], and imported
into the SpaceClaim editor. With the plugin Dynamics for SpaceClaim, the positions
of the joints could be identified and actuators attached. The density was assumed to

20

Equation Algorithm Step Description

(5.1) - Convert the desired position to a velocity (which
is required by (3.3)).

(5.2) 3 A step in the control simulation with the veloc-
ity given by the motion planner and obtain a
force.

(5.3) 5 Calculate new velocities for the bodies of the real
robot simulation, using the forces calculated in
(5.2).

(5.4) 5 Calculate the next set of robot positions, using
the velocities obtained in (5.3).

(5.5) 7 Step back the control simulation by loading its
previous state.

(5.6) - Calculate a velocity with the real robot’s joint
positions as desired positions.

(5.7) 8 A step in the control simulation. The forces re-
ceived here could be used to predict the behavior
of the robot, although this was not attempted in
this project.

Table 1: Description of equations (5.1)-(5.7)

21

Figure 9: ABB Yumi [31].

be constant, and the total mass was set to 412 kg in accordance with its datasheet.
According to its datasheet1. Dynamics for SpaceClaim automatically sets centres of
gravity and moments of inertia according to the specified mass distributions.

6 Results

Presented below are the results obtained using various test cases, as well as a description
of how the results are presented in the form of plots.

6.1 Test Scenarios

To test some aspects of the controller, a few test scenarios were conducted. Each simu-
lation was conducted using a time step h of 1

200 and 1
2000 respectively to investigate the

impact of updating frequencies on the stability. The goal is to test the same properties in
all the models, but as the models are very different, individual tests had to be designed.
These are described below.

1see Appendix A

22

6.1.1 Step Test

The step test aims at evaluating the controller’s performance in moving from one point
to another, with start and end velocities being 0.

Sphere A step in the sphere simulation consists of moving the sphere from z = 0[m]
to z = 1[m].

Yumi A step for Yumi consists of moving the end-effector of each arm 0.3 m along the
y-axis in opposite directions [32], i.e. the axis that runs through the sides of the robot
base.

6.1.2 Offline Step Test

The offline step test uses an offline planner as described in section 5.2.1. A standalone
robot model performs the same step as in 6.1.1 and stores the joint values for each time
step in a table. This table is sent to the motion planner, which hands the controller one
set of positions at a time.

6.1.3 Collisions

Collision testing is intended to show how the controller handles collisions, and if they
can be detected, and possibly avoided.

Sphere By placing a plane perpendicular to the z-axis while performing a step, the
sphere will collide with the plane.

6.1.4 Hand Guiding

Hand guiding is the act of manually moving the end effector by grabbing it and forcing
it to a new position. This can be accomplished by setting a desired speed at the motion
planner to 0, while updating its position according to the real robot’s configuration.

Sphere To examine the effects of drifting when attempting hand guiding, the actuators
of the trajectory simulation sphere was set to 0, and the simulation was run for 3 seconds.

6.2 Graphs

The results are presented as a series of graphs displaying various data about the simu-
lations. These graphs are explained below:

Force Comparison (Fcompare) Shows the force τ sent to the real robot (blue) and the
force τ ′ applied by the control robot to reach the same position as the real robot (red).
Compare the forces acquired in steps 4 and 8 of the algorithm in section 5.3.

23

Fcompare Fdiff Pcompare Pdiff Vcompare Vdiff
Sphere Step x x x x x x

Yumi Step x x x x

Sphere Offline x x x x x x

Yumi Offline x x x x

Sphere Collision x x x x

Sphere Guiding x x x

Table 2: Matrix showing graph availability.

Force Difference (Fdiff) Shows the difference between the forces above, i.e. τ − τ ′

Path Comparison (Pcompare) Shows the path specified by the motion planner qd (blue)
and the path taken by the robot q (red)

Path Difference (Pdiff) Shows the difference between the paths above, i.e. q − qd

Velocity Comparison (Vcompare) Shows the velocity vc required by the control robot
to reach the position given by the motion planner (blue) and the velocity v applied by
the real robot (red).

Velocity Difference (Vdiff) Shows the difference between the forces above, i.e. v − vc

What graphs are available for each scenario is visualized in table 2. Each simulation
is conducted with two different time steps: h = 1

200 and h = 1
2000 . Due to the size and

number of the graphs, they are presented in Appendix A.

7 Conclusion

This paper has presented a possible new paradigm for controlling robot manipulators,
where real-time physics simulations are present in every part of the control loop con-
troller, from on-line motion planning to control of the individual actuator forces. The
approach has shown promise in simulations, where signal noise and mass bias was added
to the controlled robot to emulate differences between the model and real-world plant.

Another advantage of the system is its modularity, where both the motion planner
and the control simulation can be replaced with other types of implementations using
the FMI standard. These implementations doesn’t have to consist of simulations at all,
as long as they share the same in- and outputs.

7.1 Result Discussion

The results show that the controller is stable for all the different test scenarios, and also
that it is able to handle some model error and noise, although to what extent will have

24

to be examined outside of this project. The force comparisons show some bias, and this
is due to the model error where the real robot simulation has a 10% increase in mass.
This difference is also the cause of the drift present in the hand guiding test, as the
motion planner will update its position each time step with the incorrect position of the
real robot (see step 9 of the algorithm in section 5.3.

Comparing the different sizes of time step, it is obvious that a smaller time step is
able to reduce the error significantly. This is expected, as the controller will be able to
account for the errors faster.

The collision test shows that the controller is able to detect collisions, as either a
difference in joint position between expected and actual position, or as a force difference
between the force needed to reach the expected position and the actual position (compare
with equations (5.2) and (5.7) but the specifics of such collisions will have to be examined
further.

Whether on-line or off-line planning makes very little difference for the result. This is
probably due to the fact that the path was generated by an identical model as the control
simulation robot. The hand-guiding scenario, however, requires an on-line planner to
function, as the trajectory is not known beforehand.

7.2 Limitations

Even though the approach shows promise in simulation, there are some limitations to
consider. In its current state, the algorithm requires that the the actuators can be mod-
eled as constraints acting directly on their respective joint. This is a good approximation
for smaller robots with simple actuator dynamics, like the ABB Yumi, but will present
a serious problem when the motors need to be modeled with a drive-line, e.g. when the
motor is not located at the joint, or when a gear box is utilized.

Further, when applying hand-guiding, the controller is susceptible to drift as the
motion planner’s only mission is to remain at 0 velocity, while the real robot is bound
to make small deviations from its origin at each timestep due to model imperfections.
Through feedback (part 5-8 in the main algorithm from section 5.3), these deviations are
replicated in the motion planner simulation. This might be solved by applying feedback
to the motion planner only when the difference in state between it and the control
simulation becomes too large. This has, however, not been attempted in this project.

7.3 Future Work

The most obvious continuation of this work would be the implementation on a real
robot, or at least research into what would be required to do so. Close to this is also
the issue of a more quantitative performance benchmarking, as the testing conducted in
this report is merely intended as a proof of concept. The controller performance could
then be compared to other controllers, such as PID and computed torque control.

Another interesting topic to investigate is optimization of motion planning. The strat-
egy implemented in this paper is guaranteed to find a viable path, but it does not attempt
to find any sort of optimal path. Optimal motion planning is a huge subject, and look-

25

ing into how physics simulations could be utilized for this purpose would be a very
interesting topic.

8 Acknowledgements

I would like to thank my supervisor, Kenneth Bodin, who helped me with both inspira-
tion and motivation throughout the project. I would also like to thank all the employees
at Algoryx Simulation AB, and especially Michael Brandl, Nils Hjelte, Emanuel
Dahlberg and Claude Lacoursière for providing much needed support and insight.

References

[1] N. Keivan and G. Sibley, “Towards autonomous robotic systems: 14th annual con-
ference, taros 2013, oxford, uk, august 28–30, 2013, revised selected papers,” in,
A. Natraj, S. Cameron, et al., Eds. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 2014, ch. Realtime Simulation-in-the-Loop Control for Agile Ground Vehicles,
pp. 276–287, isbn: 978-3-662-43645-5. doi: 10.1007/978-3-662-43645-5_29.
[Online]. Available: http://dx.doi.org/10.1007/978-3-662-43645-5_29.

[2] M. Olsson, “Simulation and execution of autonomous robot systems,” eng, PhD
thesis, Lund University, 2002, p. 100, isbn: 91-628-5120-9.

[3] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-based
control,” in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, Oct. 2012, pp. 5026–5033. doi: 10.1109/IROS.2012.6386109.

[4] P. Abreu, M. R. Barbosa, and A. M. Lopes, “Robotics virtual lab based on
off-line robot programming software,” in Experiment@ International Conference
(exp.at’13), 2013 2nd, Sep. 2013, pp. 109–113. doi: 10 . 1109 / ExpAt . 2013 .

6703040.

[5] C. Lacoursière, “Ghosts and machines : Regularized variational methods for inter-
active simulations of multibodies with dry frictional contacts,” PhD thesis, Ume̊a
University, Computing Science, 2007, p. 444.

[6] R. Aparnathi and V. V. Dwivedi, “The novel of six axes robotic arm for industrial
applications,” IAES International Journal of Robotics and Automation (IJRA),
vol. 3, no. 3, pp. 161–167, 2014. [Online]. Available: http://iaesjournal.com/
online/index.php/IJRA/article/view/4892.

[7] M. F. Mendes, W. Kraus Jr., and E. R. d. Pieri, “Variable structure position
control of an industrial robotic manipulator,” en, Journal of the Brazilian Society
of Mechanical Sciences, vol. 24, pp. 169–176, Jul. 2002, issn: 0100-7386. [Online].
Available: http://www.scielo.br/scielo.php?script=sci_arttext&pid=
S0100-73862002000300004&nrm=iso.

[8] I. Asimov, I, Robot. Facwcett Crest, 1933.

26

[9] A. Boeing and T. Bräunl, “Evaluation of real-time physics simulation systems,” in
Proceedings of the 5th International Conference on Computer Graphics and Inter-
active Techniques in Australia and Southeast Asia, ser. GRAPHITE ’07, Perth,
Australia: ACM, 2007, pp. 281–288, isbn: 978-1-59593-912-8. doi: 10 . 1145 /

1321261.1321312. [Online]. Available: http://doi.acm.org/10.1145/1321261.
1321312.

[10] Y.-T. Wang and V.-j. Kumar, “Simulation of mechanical systems with multiple
frictional contacts,” Journal of Mechanical Design, vol. 116, no. 2, pp. 571–580,
1994.

[11] J. Ginsberg, Engineering dynamics. Cambridge University Press, 2008, vol. 10,
ch. Generalized Coordinates and Kinematical Constraints, pp. 396–408.

[12] Agx dynamics user manual, 2.15.0.0, Algoryx Simulations AB, Feb. 2016.

[13] W. Schiehlen, “Multibody system dynamics: Roots and perspectives,” Multibody
System Dynamics, vol. 1, no. 2, pp. 149–188, issn: 1573-272X. doi: 10.1023/

A : 1009745432698. [Online]. Available: http : / / dx . doi . org / 10 . 1023 / A :

1009745432698.

[14] C. Lacoursière, personal communication, Mar. 4, 2016.

[15] R. Kelly, V. S. Davila, and A. Loŕıa, “Control of robot manipulators in joint
space,” in. London: Springer London, 2005, ch. What Does Control of Robots
Involve? Pp. 7–17, isbn: 978-1-85233-999-9. doi: 10.1007/1-85233-999-3_2.
[Online]. Available: http://dx.doi.org/10.1007/1-85233-999-3_2.

[16] C. E. Garćıa, D. M. Prett, and M. Morari, “Model predictive control: Theory and
practice—a survey,” Automatica, vol. 25, no. 3, pp. 335–348, 1989, issn: 0005-1098.
doi: http://dx.doi.org/10.1016/0005-1098(89)90002-2. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0005109889900022.

[17] P. Agachi, Z. Nagy, et al., Model Based Control: Case Studies in Process Engi-
neering. Wiley, 2007, isbn: 9783527609222. [Online]. Available: https://books.
google.se/books?id=kLeQqpbDj20C.

[18] C. H. An, C. G. Atkeson, and J. M. Hollerbach, Model-based Control of a Robot
Manipulator. Cambridge, MA, USA: MIT Press, 1988, isbn: 0-262-01102-6.

[19] R. Kelly, V. S. Davila, and A. Loŕıa, Control of Robot Manipulators in Joint Space.
London: Springer London, 2005, isbn: 978-1-85233-999-9. doi: 10.1007/1-85233-
999-3_2. [Online]. Available: http://dx.doi.org/10.1007/1-85233-999-3_2.

[20] F. Flacco, “Modeling and control of robots with compliant actuation,” PhD the-
sis, Universitá di Roma, Dipartimento di Ingegneria Informatica, Automatica e
Gestionale, 2012.

27

[21] R. Kelly, V. S. Davila, and A. Loŕıa, “Control of robot manipulators in joint space,”
in. London: Springer London, 2005, ch. Computed-torque Control and Computed-
torque+ Control, pp. 227–241, isbn: 978-1-85233-999-9. doi: 10.1007/1-85233-
999-3_13. [Online]. Available: http://dx.doi.org/10.1007/1-85233-999-
3_13.

[22] Z. Shiller, “Motion and operation planning of robotic systems: Background and
practical approaches,” in, G. Carbone and F. Gomez-Bravo, Eds. Cham: Springer
International Publishing, 2015, ch. Off-Line and On-Line Trajectory Planning,
pp. 29–62, isbn: 978-3-319-14705-5. doi: 10.1007 /978- 3- 319 - 14705 - 5_2.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-14705-5_2.

[23] Y. K. Hwang and N. Ahuja, “A potential field approach to path planning,” IEEE
Transactions on Robotics and Automation, vol. 8, no. 1, pp. 23–32, Feb. 1992, issn:
1042-296X. doi: 10.1109/70.127236.

[24] J. Cortes and T. Simeon, “Probabilistic motion planning for parallel mechanisms,”
in Robotics and Automation, 2003. Proceedings. ICRA ’03. IEEE International
Conference on, vol. 3, Sep. 2003, 4354–4359 vol.3. doi: 10.1109/ROBOT.2003.
1242274.

[25] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press,
2006, Available at http://planning.cs.uiuc.edu/.

[26] H. Choset, K. M. Lynch, et al., Principles of Robot Motion:Theory, Algorithms,
and Implementations. MIT Press, 2005, isbn: 9780262255912.

[27] Z. Shiller and S. Dubowsky, “On computing the global time-optimal motions of
robotic manipulators in the presence of obstacles,” IEEE Transactions on Robotics
and Automation, vol. 7, no. 6, pp. 785–797, Dec. 1991, issn: 1042-296X. doi:
10.1109/70.105387.

[28] K. Kant and S. W. Zucker, “Toward efficient trajectory planning: The path-velocity
decomposition,” Int. J. Rob. Res., vol. 5, no. 3, pp. 72–89, Sep. 1986, issn: 0278-
3649. doi: 10.1177/027836498600500304. [Online]. Available: http://dx.doi.
org/10.1177/027836498600500304.

[29] L. Barinka and R. Berka, “Inverse kinematics-basic methods,” Czech Technical
University, Dept. of Computer Science and Engineering, Tech. Rep., 2002.

[30] T. Blochwitz, M. Otter, et al., “Functional mockup interface 2.0: The standard for
tool independent exchange of simulation models,” eng, in Proceedings of the 9th
International Modelica Conference, Munich, Germany: The Modelica Association,
2012, pp. 173–184, isbn: 978-91-7519-826-2. [Online]. Available: http://dx.doi.
org/10.3384/ecp12076173.

[31] ABB. (2016). Yumi - abb, [Online]. Available: http://new.abb.com/products/
robotics/yumi (visited on 03/02/2016).

[32] M. Törnqvist. (Mar. 7, 2016). Agx yumi step, Youtube, [Online]. Available: https:
//www.youtube.com/watch?v=OUJ-wwdkC70.

28

Appendix A: Result Graphs

Sphere Step: Force Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [

N
]

-40

-20

0

20

40
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-40

-20

0

20

40
h = 2000 [Hz]

Sphere Step: Force Difference

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [
N

]

-4

-2

0

2

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

-4

-2

0

2

h = 2000 [Hz]

Sphere Step: Velocity Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

v
 [

m
/s

]

-0.2

0

0.2

0.4

0.6

0.8

1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

h = 2000 [Hz]

29

Sphere Step: Velocity Difference

t [s]

0 0.5 1 1.5 2 2.5 3

v
 [

m
/s

]

-0.2

-0.1

0

0.1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

h = 2000 [Hz]

Sphere Step: Path Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [

m
]

-0.2

0

0.2

0.4

0.6

0.8

1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

h = 2000 [Hz]

Sphere Step: Path Difference

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [

m
]

×10-5

-10

-5

0

5

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

×10-5

-10

-5

0

5

h = 2000 [Hz]

Sphere Offline: Force Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [

N
]

-40

-20

0

20

40
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-40

-20

0

20

40
h = 2000 [Hz]

30

Sphere Offline: Force Difference

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [
N

]

-4

-2

0

2

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

-4

-2

0

2

h = 2000 [Hz]

Sphere Offline: Velocity Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

v
 [

m
/s

]

-0.2

0

0.2

0.4

0.6

0.8

1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

h = 2000 [Hz]

Sphere Offline: Velocity Difference

t [s]

0 0.5 1 1.5 2 2.5 3

v
 [

m
/s

]

-0.2

-0.1

0

0.1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

-0.2

-0.1

0

0.1

h = 2000 [Hz]

Sphere Offline: Path Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [

m
]

-0.2

0

0.2

0.4

0.6

0.8

1

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1

h = 2000 [Hz]

31

Sphere Offline: Path Difference

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [

m
]

×10-5

-10

-5

0

5

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

×10-5

-10

-5

0

5

h = 2000 [Hz]

Sphere Collision: Force Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [

N
]

-3000

-2000

-1000

0

h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-3000

-2000

-1000

0

h = 2000 [Hz]

Sphere Collision: Force Difference

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [

N
]

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-7000

-6000

-5000

-4000

-3000

-2000

-1000

0
h = 2000 [Hz]

Sphere Collision: Path Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [

m
]

-0.2

0

0.2

0.4

0.6

0.8

1
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.2

0

0.2

0.4

0.6

0.8

1
h = 2000 [Hz]

32

Sphere Collision: Path Difference

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [
m

]

-0.015

-0.01

-0.005

0
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5

-0.015

-0.01

-0.005

0
h = 2000 [Hz]

Sphere Guiding: Force Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

F
 [
N

]

8.5

9

9.5

10

10.5

11

11.5
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
8.5

9

9.5

10

10.5

11

11.5
h = 2000 [Hz]

Sphere Guiding: Path Comparison

t [s]

0 0.5 1 1.5 2 2.5 3

q
 [
m

]

-0.015

-0.01

-0.005

0
h = 200 [Hz]

t [s]

0 0.5 1 1.5 2 2.5
-0.015

-0.01

-0.005

0
h = 2000 [Hz]

33

Yumi Step: Force Difference, h = 1/200

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6

F
 [
N

]

-0.4

-0.2

0

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
0

0.01

0.02

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6
-0.01

0

0.01

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

t [s]

0 1 2 3 4 5 6

×10-5

0

0.5

1

34

Yumi Step: Force Difference, h = 1/2000

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6

F
 [
N

]

-0.5

0

0.5

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
0

0.02

0.04

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6
-0.01

0

0.01

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

35

Yumi Step: Path Comparison, h = 1/200

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6

q
 [

m
]

-1

0

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-2

0

2

36

Yumi Step: Path Comparison, h = 1/2000

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6

q
 [

m
]

-1

0

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-2

0

2

37

Yumi Step: Path Difference, h = 1/200

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-2

0

2

0 1 2 3 4 5 6

q
 [

m
]

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-4

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-3

-5

0

5

38

Yumi Step: Path Difference, h = 1/2000

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-2

0

2

0 1 2 3 4 5 6

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-2

0

2

0 1 2 3 4 5 6

q
 [

m
]

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-1

0

1

0 1 2 3 4 5 6

×10-5

-5

0

5

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-6

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-5

-1

0

1

t [s]

0 1 2 3 4 5 6

×10-5

-5

0

5

39

Yumi Step: Velocity Difference, h = 1/200

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6

v
 [
m

/s
]

-0.1

0

0.1

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-5

0

5

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-0.1

0

0.1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-5

0

5

40

Yumi Step: Velocity Difference, h = 1/2000

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6

v
 [
m

/s
]

-0.02

0

0.02

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.02

0

0.02

t [s]

0 1 2 3 4 5 6
-0.1

0

0.1

t [s]

0 1 2 3 4 5 6
-1

0

1

41

Yumi Offline: Force Difference, h = 1/200

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6

F
 [
N

]

-0.4

-0.2

0

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
0

0.01

0.02

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6
-0.01

0

0.01

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

t [s]

0 1 2 3 4 5 6

×10-5

0

0.5

1

42

Yumi Offline: Force Difference, h = 1/2000

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.6

-0.4

-0.2

0

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6

F
 [
N

]

-0.5

0

0.5

0 1 2 3 4 5 6
-0.4

-0.2

0

0 1 2 3 4 5 6
0

0.02

0.04

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6
-0.01

0

0.01

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

t [s]

0 1 2 3 4 5 6

×10-6

0

2

4

43

Yumi Offline: Path Comparison, h = 1/200

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6

q
 [

m
]

-1

0

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-2

0

2

44

Yumi Offline: Path Comparison, h = 1/2000

0 1 2 3 4 5 6
0

0.5

1

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6

q
 [

m
]

-1

0

1

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-2

0

2

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-2

0

2

45

Yumi Offline: Path Difference, h = 1/200

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-2

0

2

0 1 2 3 4 5 6

q
 [

m
]

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

0 1 2 3 4 5 6

×10-3

-5

0

5

0 1 2 3 4 5 6

×10-4

-2

0

2

0 1 2 3 4 5 6

×10-4

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-4

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-3

-5

0

5

46

Yumi Offline: Path Difference, h = 1/2000

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-2

0

2

0 1 2 3 4 5 6

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-2

0

2

0 1 2 3 4 5 6

q
 [

m
]

×10-6

-2

0

2

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-5

-1

0

1

0 1 2 3 4 5 6

×10-5

-5

0

5

0 1 2 3 4 5 6

×10-6

-5

0

5

0 1 2 3 4 5 6

×10-6

-5

0

5

t [s]

0 1 2 3 4 5 6

×10-5

-1

0

1

t [s]

0 1 2 3 4 5 6

×10-5

-5

0

5

47

Yumi Offline: Velocity Difference, h = 1/200

0 1 2 3 4 5 6
-0.2

0

0.2

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-0.5

0

0.5

0 1 2 3 4 5 6

v
 [
m

/s
]

-0.1

0

0.1

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-5

0

5

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-0.1

0

0.1

t [s]

0 1 2 3 4 5 6
-1

0

1

t [s]

0 1 2 3 4 5 6
-5

0

5

48

Yumi Offline: Velocity Difference, h = 1/2000

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.05

0

0.05

0 1 2 3 4 5 6

v
 [
m

/s
]

-0.02

0

0.02

0 1 2 3 4 5 6
-0.01

0

0.01

0 1 2 3 4 5 6
-0.1

0

0.1

0 1 2 3 4 5 6
-1

0

1

0 1 2 3 4 5 6
-0.02

0

0.02

0 1 2 3 4 5 6
-0.02

0

0.02

t [s]

0 1 2 3 4 5 6
-0.1

0

0.1

t [s]

0 1 2 3 4 5 6
-1

0

1

49

www.kth.se

